出典:教えて!goo
二つの球面が交わってできる円の方程式
XYZ座標において、二つの球面が交わって出来る交線の円の方程式の解き方を教えてください。 ただし半径は同じ長さRとします。 それぞれの二つの球の方程式を (X-a)^2+(Y-b)^2+(Z-c)^2=R
球面と直線の交点
点P(Px,Py,Pz)から方向ベクトル(x,y,z)にのびた直線が、原点O(0,0,0)、半径rの球の表面と交わる点Qの座標を求めたいのですが、どなたか教えていただけないでしょうか。 O-P-Qの三角形を作ると、...
円柱と球面の囲まれる部分の体積曲面積を求める問題で
円柱S1:x^2+y^2=axと球面S2:x^2+y^2+z^2=a^2,a>0を考える。 (1)S1とS2によって囲まれる部分の体積を求めよ。 (2)球面S2が円柱S1によって切り取られる部分の曲面積を求めよ。 という問題がわかりません。...
もっと調べる