胃の構造とはたらき
胃は袋状の臓器で、長さは成人で約25㎝。からだの中心よりやや左よりの、左上腹部からへその間に位置しています。 胃の容積は、空腹時には50ml以下ですが、食後には1.5l、詰め込めば2lにもなります。口腔から肛門まで連なる消化管のなかで、もっとも大きな容積をもつ臓器が胃です。 胃は食道から送られてきた食べ物を消化しながら、小腸の受け入れを待ちます。そして、少しずつゆっくりと、粥状になった食べ物を小腸の最初の部分である十二指腸へ送り出します。このように、食べ物を一時的に蓄えること、胃液(塩酸とペプシン)によって、たんぱく質を分解することが胃の二大機能です。 食べ物が胃を通過するのに要する時間は、液体ならば数分以内、固形物では1~2時間程度です。しかし、脂肪を多く含む脂っこい食べ物は、3~4時間ほど胃にとどまります。 食道とつながる胃の入り口部分を「噴門」、胃の天井に当たる部分を「胃底」、胃の大部分を占める中央部を「胃体」、そして十二指腸とつながる胃の出口部分を「幽門」と呼びます。 幽門は括約筋という筋肉でできています。括約筋は輪状の筋肉で、胃の出口を閉じたり開いたりすることによって、胃の内容物の貯留・排出を調節しています。「括る」という文字にあるように、バルブのような役割をもつ筋肉といってもよいでしょう。 幽門は、食べ物が中性か弱酸性ならば開きますが、強い酸性の場合は、十二指腸の内壁が酸でただれないよう、反射的に閉じるようになっています。 胃液は、胃の内側を覆う粘膜の「胃腺」から分泌されます。胃腺には、①「塩酸」を分泌する「壁細胞」、②「ペプシノーゲン」「胃リパーゼ」を分泌する「主細胞」、③胃壁を守る「粘液」を分泌する「副細胞」の3つの細胞があります。胃底部や胃体部の胃腺からは塩酸やペプシノーゲンが多めに分泌され、噴門と幽門の胃腺からは粘液が多めに分泌されます。 塩酸、ペプシノーゲン、粘液が合わさって胃液となりますが、塩酸には食べ物を殺菌して、腐敗・発酵を防ぐはたらきがあります。 ペプシノーゲンは、たんぱく質を分解する強力な消化酵素「ペプシン」の前駆物質です。 ペプシノーゲンは、壁細胞が分泌する塩酸に活性化されて、ペプシンに変化して初めて機能します。副細胞が分泌する粘液は、塩酸で胃壁がただれないよう防御する役割を果たします。
呼吸器のしくみ
通常「のど」と呼ばれている部分は、口腔、鼻腔、食道上部の咽頭、気管上部の喉頭までを指します。 のどは、呼吸器官としては外気との出入口にあたり、酸素を取り入れ、二酸化炭素を排出するはたらきをしています。また、食べ物の通り道、声を出すための器官という複数の役割も担っています。そして、外気から取り込まれた空気は、喉頭からさらに気管の奥へ送られます。 気管は、のどと肺をつなぐ管状の部分で、軟骨と筋肉でできています。気管は下端が2本に分岐しており、分岐から先を「気管支」と呼びます。 気管支は、左右の肺まで続く主気管支、肺の中で細かく分岐する細気管支からなります。 肺は、脊椎、肋骨、胸骨でつくられた鳥かご状の胸郭で囲まれている、リーフ型をした袋状の呼吸器官です。左右の肺は対称ではなく、右肺は上葉、中葉、下葉の3つに分かれているのに対し、左肺は近くに心臓があることから上葉、下葉のみで、右肺に比べて小さめにできています。内部では、気管支、肺動脈、肺静脈がすみずみまでのびています。 呼吸器経路で運ばれてきた空気は、肺の中の呼吸細気管支と呼ばれるいちばん末端の気管支から、酸素と二酸化炭素の交換を行う肺胞まで到達します。
心臓検査の目的
心電図とは、心臓の機能や心臓病の有無を調べる検査です。心筋が収縮する際の電気的な興奮をからだの表面に貼り付けた電極でとらえ、時間的な変化を波形として記録します。 心臓は、洞結節という部分が発する電気信号の刺激によって、心筋が収縮と拡張を繰り返しています。電流の伝わり方や心臓そのものに異常があると、心電図の波形に異常が現れます。 「正常」の場合の心電図では、一連の波形が規則正しく連続して現れますが、波形が乱れたり、波がとんだり、波の間隔が不規則になるときは「異常あり」とされます。ただし、心電図の異常だけでは、心臓病を診断することはできず、さらにくわしい検査が必要になります。 心電図の異常の要因には、不整脈など心臓のリズムの異常、狭心症や心筋梗塞、心筋症、心肥大、心膜炎、心臓弁膜症、心房中隔欠損症などが考えられます。 不整脈には洞性徐脈や洞性頻脈、脚ブロック、期外収縮、心房細動、房室ブロックなどさまざまな種類がありますが、不整脈のすべてが危険なわけではありません、くわしい検査を受けた上で「治療の必要なし」とされた場合は、必要以上に不安がらないことです。 不整脈が発見された場合は、さらにくわしい検査をして、危険な不整脈なのか、そうではない不整脈なのかを見極めることが大切です。
情報伝達のかなめ―神経細胞
体内の情報伝達を行う神経は、特殊な細胞の集まりによって組織されています。 この細胞はニューロン(神経細胞)と呼ばれ、核のある"神経細胞体"、神経細胞体からのびた"神経突起"で構成されます。 神経突起には、軸索(長いもの)と、樹状突起(短いもの)があり、軸索は細胞膜がキャッチした興奮(電気信号)を長い突起部にそって、先端方向へ伝えます。 一方、短いほうの樹状突起は、木の枝のように複数張り巡らされています。その先端部が他の神経細胞軸索や感覚器と接触し、接触した神経細胞から信号を受け取っています。この接触部は"シナプス"と呼ばれます。 大脳にあるニューロンは、約140億個と推定されています。無数のニューロンはシナプスを介してつながっているのです。 軸索の多くは、伝導速度を上げるために、随鞘で断続的に絶縁されています。 情報の伝達は神経細胞内では、電気信号として伝えられます。 細胞は細胞膜に覆われ、内側の液はカリウムイオンを多く含み、マイナスに荷電しています。細胞膜外側の液はナトリウムイオンを多く含み、プラスに荷電しています。 興奮が膜に伝わると、細胞内のナトリウムを通す部位が一瞬開かれます。プラス電流をもつナトリウムが細胞内に入ることにより電位変化をおこし、隣の膜に興奮を伝えます。 興奮が電気信号として軸索の先端のシナプスまで伝わるとシナプスの結合部のふくらみ(シナプス小頭)のなかにあるシナプス小胞が細胞膜に結合し中身の神経化学伝達物質をシナプス間隙に放出します。 化学伝達物質が次の細胞の樹状突起にある受容体へ結合することで新たにナトリウムチャンネルが開き、電気的な興奮が引き起こされ、さらに軸索先端へ伝達されていきます。
人体最大の臓器―肝臓
肝臓は、重さ約1.5㎏にもなる人体最大の臓器です。上部は横隔膜に、下部は胆のう、胃、十二指腸に接しており、多量の血液を含んでいるため、牛や豚のレバー同様、赤褐色をしています。 肝臓は一見、1つのかたまりのように見えますが、正確には左右2つに分かれており、これを右葉、左葉といいます。 また、多くの臓器では、動脈と静脈の2本の血管が出入りしていますが、肝臓にはもう1本、「門脈」という血管が通っています。 門脈とは胃や腸、すい臓、脾臓、胆のうなどから出た静脈が集まった血管です。肝臓の場合、必要な血液の約80%が門脈から肝臓に入ってきます。 肝臓は、「肝小葉」という直径1mmほどの小さな肝臓組織の集合体です。 肝小葉の周辺の結合組織には、俗に"三つ組"と呼ばれる肝動脈や門脈、胆管の枝が通っており、血液を取り込んだり、胆汁を運び出したりしています。また、肝小葉の中心には肝静脈につながる中心静脈が通っています。 肝小葉をつくっているのは、肝細胞と呼ばれる細胞で、その数は2500億~3000億個もあり、肝機能の中心的な役割を担っています。 肝臓は手術で70%くらいを切除しても、約4カ月で元の大きさに戻り、機能も回復します。これを「肝再生」といいます。 肝細胞の再生能力には、染色体の数が関係しているといわれています。通常の細胞は染色体が46本であるのに対し、肝細胞には染色体を通常の2倍、3倍、4倍ももつものが多く存在します。このことが、驚異的な肝再生を可能にしていると考えられています。
肥満度検査の目的
内臓脂肪蓄積・肥満の有無をチェック むかしは、体重測定だけで肥満の有無を判定していましたが、肥満と肥満がもたらす病気の関係が明らかになるにつれ、検査方法も変化してきました。 現在、肥満の判定に用いられているのは、「BMI」と「腹囲」です。BMIと腹囲を総合して、健康上問題となる肥満を判定します。 BMI(BodyMassIndex=ボディ・マス・インデックス)とは、国際的にも広く用いられている体格指数で、体重と身長からBMI値を割り出します。 肥満の定義上、本来は体脂肪量から判定すべきなのですが、BMIは体脂肪を反映することから、肥満を判定する一つの目安として用いられています。 腹囲は、とくに内臓脂肪の蓄積を知るのに有意な検査で、メタボリックシンドロームの診断基準項目の一つにもなっています。 正確には、腹部CT検査などで、内臓脂肪面積が100c㎡以上ある場合に、内臓脂肪型肥満と診断されるのですが、腹囲は内臓脂肪の蓄積(内臓脂肪面積)を反映することから、こちらも肥満判定に用いられています。 BMIや腹囲が基準値を外れる要因、つまりは肥満の要因には、遺伝的素因や性差も関与していますが、何よりも大きいのは生活習慣です。 食べ過ぎによる摂取エネルギーの過剰、運動不足による消費エネルギーの不足が、エネルギー収支のバランスを崩し、体脂肪や体重の増加をまねきます。 また、肥満をまねく生活習慣の下地にはストレス、睡眠不足、自律神経やホルモンバランスの乱れなども関係しています。これらが過食を招いたり、太りやすい体質をつくる場合も少なくありません。 中年以降に太りやすくなる原因としては、基礎代謝の低下があげられます。 基礎代謝とは、呼吸や睡眠、消化など、生命を維持するための活動に必要な最低限のエネルギーのことです。 年をとると活動量が減り、筋肉が落ち、また若い頃のように成長に必要なエネルギーもいらなくなります。 こうして基礎代謝は老化に伴い低下していくのですが、さらに運動不足などが加わると、基礎代謝の低下にも拍車がかかります。 基礎代謝は成人で平均1200kcalとされており、これより低下すればするほど、エネルギー収支のバランスが崩れて太りやすくなります。 肥満、とくに内臓脂肪の蓄積は、さまざまな生活習慣病を合併することで知られています。具体的には脂質異常症をはじめ、糖尿病、高血圧、高尿酸血症、脂肪肝、動脈硬化など。さらには脳卒中や心筋梗塞などの引き金となるといわれています。 また、近年はメタボリックシンドロームの概念からも、内臓脂肪型肥満が問題視されています。 脂肪細胞からは、アディポサイトカインと呼ばれる生理活性物質が分泌されています。 アディポサイトカインには、血糖値の上昇、脂質異常の促進、血圧の上昇にかかわる悪玉アディポサイトカインと、動脈硬化の抑制や糖代謝の改善に働く善玉アディポサイトカイン(アディポネクチンという)があり、健康な体内では善玉と悪玉のバランスが保たれています。 しかし、内臓脂肪が蓄積した状態では、善玉であるアディポネクチンの分泌が低下し、悪玉アディポサイトカインの分泌が過剰になるのです。 このアンバランスが生活習慣病の連鎖を引き起こし、動脈硬化を促進させると考えられています。 そのほかにも、内臓脂肪、皮下脂肪にかかわらず、肥満を放置していると、ひざや腰などに過剰な負荷がかかり続けるため、膝関節症などの運動器疾患をもたらします。 また、睡眠時無呼吸症候群や、女性では月経異常など婦人科系疾患との関連も指摘されています。
免疫機能の乱れによる不調
免疫機能の中心となる白血球は、体内に侵入した異物(抗原)を攻撃してからだを守ってくれますが、ときには、このはたらきが逆効果となることがあります。 免疫機能が何らかの原因で異常をおこすと、攻撃の必要のないものまで攻撃したり、抗原の威力がそう強くないものに過剰な攻撃をしかけたりしてしまいます。これらのことが原因で、体内の正常な組織や細胞が破壊されてしまうのです。 免疫機能の異常からおこる症状の一つは、アレルギー反応として現れます。アレルギーとは、体内に侵入した、"アレルゲン"という原因物質を攻撃するための抗体が、正常に機能しないためおこるものです。 この抗体は、「肥満細胞」に付着しますが、そこにアレルゲンがついてしまうと、肥満細胞内の化学伝達物質である"ヒスタミン"が血液中に大量に放出されます。ヒスタミンは、毛細血管を拡張する、気管支を収縮させる、血圧を上昇させる、浮腫やかゆみを引き起こすといった作用をもつため、大量に体内放出されると、かゆみ、鼻水、充血、じんましんなどのアレルギー反応がおこります。 代表的なアレルゲンは、花粉、ほこり、動物の毛です。