さまざまなホルモンのはたらき
甲状腺ホルモン 全身の細胞の活性化を促進する作用があります。主なはたらきは、以下の8つです。 ①基礎代謝と熱産生を上げて体温を上昇させる。 ②心拍数を上げて血圧を上昇させる。 ③交感神経のはたらきを高め、アドレナリン分泌を増加させる。 ④精神機能を高め、興奮した状態をつくり出す。 ⑤食後血糖を上昇させる。 ⑥血液中のコレステロール濃度を下げる。 ⑦成長ホルモンの合成を高めるとともに、作用を増強する。 ⑧成長期の中枢神経細胞の分化・成熟を促すなど。 カルシトニン 血液中のカルシウム濃度が増加することで分泌が促されます。血液中のカルシウムを骨に移動させて、骨の形成を促進します。 副甲状腺ホルモンは、骨のカルシウムを血液中に放出させるとともに、腎臓から尿へのカルシウムの排泄を抑制して、血液中のカルシウム濃度を高めます。また、腎臓でのビタミンDの活性化を促進することで、間接的に消化管からのカルシウム吸収を促します。 腎臓でつくられるエリスロポエチンは、アミノ酸165個からなるホルモンで、骨髄に作用し、赤血球の増殖・成熟を刺激します。 心臓からは、心房性ナトリウム利尿ホルモンが分泌され、高血圧などの心臓負担を和らげています。 胃から分泌されるグレリンは摂食亢進、成長ホルモン分泌促進、インスリン分泌抑制作用をもっています。 ガストリンは胃酸の分泌を促進します。 コレシストキニンは胆のうの収縮促進や腸管の運動を刺激します。 セクレチンはすい臓から水分と重炭酸の分泌の促進、胆汁分泌の促進、胃酸分泌と消化管運動の抑制をします。 副腎皮質ホルモン アルドステロン(ミネラルコルチコイド)は、腎臓から尿に排泄されるナトリウムを制限して、血中のナトリウム濃度を高めて血圧を上昇させ、水分の体内貯留を促進します。 コルチゾール(糖質コルチコイド)は、血液中のブドウ糖の供給を増加させる糖代謝作用です。またストレスを受けたり、感染がおこったときなどに大量に分泌されます。 デヒドロエピアンドロステロン(DHEA・副腎性性ホルモン)は、副腎皮質でつくられる男性ホルモンです。女性では、これがさらに女性ホルモンに変わります。性ホルモンは主に精巣や卵巣からつくられますが、副腎でもつくられています。 副腎髄質ホルモン アドレナリンとノルアドレナリンは、カテコールアミンと呼ばれるホルモンです。ともに突然の危機や非常時に直面したときなどに、交感神経の緊張により分泌が刺激されて、事態に対処するよう生体機能をコントロールするはたらきがあります。 すい臓にはランゲルハンス島と呼ばれる細胞の集合体が無数に散らばっており、インスリンやグルカゴンといったホルモンを分泌する内分泌腺として働いています。 グルカゴンは、肝臓内のグリコーゲンを分解、ブドウ糖の生産を促します。 インスリンは血液中の血糖値が過度に上昇するのを抑え、逆にグルカゴンは血糖値が下がり過ぎないように働きます。 男性は、黄体形成ホルモンが下垂体から分泌され、テストステロンを精巣の間質細胞が分泌します。このテストステロンの作用により、思春期に性器の成熟、声変わり、ひげが生えるなどの変化がおこります。卵胞刺激ホルモンから精子がつくられます。 女性は、卵胞や黄体が卵巣で発達し、生殖に必要なエストロゲン(卵胞ホルモン)、プロゲステロン(黄体ホルモン)が分泌されます。
受精と排卵のメカニズム
思春期になると、脳の下垂体から"卵胞刺激ホルモン"と、"黄体ホルモン"が分泌され、卵巣内膜内の原始卵胞(成熟していない卵胞)が活動を始めます。 卵胞が成熟(成熟卵胞)すると卵胞の膜が破裂し、なかの卵子は卵巣の外に排出されます。この状態が「排卵」です。 卵巣からの排卵は月に一度、月経周期に合わせて、左右どちらかの卵巣から行われます。 排卵が終わった卵胞は黄体に変わり、プロゲステロン(黄体ホルモン)とエストロゲン(卵胞ホルモン)を分泌します。 このホルモン分泌で子宮内膜に厚みが増し、受精卵が着床しやすくなります。 排卵された卵細胞(卵子)は卵管に取り込まれ、厚みが増した内膜の子宮へと送られます。 受精はこの卵管内で行われ、受精卵となって子宮内膜に着床します。受精をしなかった場合、厚みを増した内膜ははがれ落ち、受精しなかった卵子や血液とともに、膣から"経血"として排出されます。 月経の周期には、個人差がありますが、平均28日周期で、5日間続きます。 月経後は次の排卵への準備が始まります。排卵日は次の月経開始日の14日前です。 卵子は、直径0.1~0.2mm。人体でもっとも大きな細胞です。卵子の外側は顆粒膜細胞が囲み、内側にはたんぱく質でできた透明帯という膜が張り、さらにその内側に、母親の遺伝子を伝える23本の染色体をもつ核が入った卵細胞質があります。 卵子の元となる始原生殖細胞は、胎児の頃から存在しています。始原生殖細胞は、胎児のうちから卵原細胞→卵祖細胞→卵母細胞へ姿を変えて、卵胞という袋のなかで休眠期に入ります。この状態が原始卵胞です。 やがて思春期になると、休眠していた卵母細胞が活動を再開し、数回の減数分裂を繰り返し、23個の染色体をもつ細胞になります。このうち、たった1つの細胞が卵子となり、それ以外は消滅します。
情報伝達のかなめ―神経細胞
体内の情報伝達を行う神経は、特殊な細胞の集まりによって組織されています。 この細胞はニューロン(神経細胞)と呼ばれ、核のある"神経細胞体"、神経細胞体からのびた"神経突起"で構成されます。 神経突起には、軸索(長いもの)と、樹状突起(短いもの)があり、軸索は細胞膜がキャッチした興奮(電気信号)を長い突起部にそって、先端方向へ伝えます。 一方、短いほうの樹状突起は、木の枝のように複数張り巡らされています。その先端部が他の神経細胞軸索や感覚器と接触し、接触した神経細胞から信号を受け取っています。この接触部は"シナプス"と呼ばれます。 大脳にあるニューロンは、約140億個と推定されています。無数のニューロンはシナプスを介してつながっているのです。 軸索の多くは、伝導速度を上げるために、随鞘で断続的に絶縁されています。 情報の伝達は神経細胞内では、電気信号として伝えられます。 細胞は細胞膜に覆われ、内側の液はカリウムイオンを多く含み、マイナスに荷電しています。細胞膜外側の液はナトリウムイオンを多く含み、プラスに荷電しています。 興奮が膜に伝わると、細胞内のナトリウムを通す部位が一瞬開かれます。プラス電流をもつナトリウムが細胞内に入ることにより電位変化をおこし、隣の膜に興奮を伝えます。 興奮が電気信号として軸索の先端のシナプスまで伝わるとシナプスの結合部のふくらみ(シナプス小頭)のなかにあるシナプス小胞が細胞膜に結合し中身の神経化学伝達物質をシナプス間隙に放出します。 化学伝達物質が次の細胞の樹状突起にある受容体へ結合することで新たにナトリウムチャンネルが開き、電気的な興奮が引き起こされ、さらに軸索先端へ伝達されていきます。
腎臓・泌尿器の病気の仕組み(腎がん・急性腎炎・尿路結石など)
腎臓は尿をつくるだけでなく、体液に含まれるナトリウムやカリウムなどの成分を調節したり、赤血球の産生を促すホルモンや血圧を調節するホルモンをつくるなど、多様なはたらきを担っています。そんな腎臓にダメージを与えるのが「腎炎(糸球体腎炎)」や腎臓のがんです。 また、「尿路結石」や「腎不全」、「前立腺肥大」がおこると、尿が出にくくなったり、出なくなったり、逆に頻尿になったりと、排尿に異変が生じます。 腎臓の中心部にある腎盂は尿を尿管へ送る通路です。この腎盂で発生するのが腎盂がんです。腎盂は移行上皮と呼ばれる粘膜で構成されており、がんはここで発生します。尿管も移行上皮で構成されているため、腎盂がんに尿管がんを合併することも少なくありません。 腎臓の尿細管の上皮細胞から発生するがんで、腎臓にできるがんの約9割を占めるといわれています。腎細胞がんは静脈へ侵入して広がる傾向があり、腎静脈から下大動脈へと腫瘍血栓をつくって、心臓の右心房へ達することもあります。 腎炎の一種である急性糸球体腎炎は、腎臓以外のところで感染がおき、その後、感染した病原体に対する免疫反応が糸球体を障害していくというものです。不要なものをこしとる毛細血管の"基底膜"という部分に、感染した病原体とこれに立ち向かう物質が結合した"免疫複合体"が沈着して炎症がおきます。すると、基底膜が分厚くなったり、毛細血管の内皮細胞が壊死するなどの異変が発生します。 急性腎不全は①血圧低下や全身の血流量低下、②重い急性腎炎や尿細管の閉塞など、③尿路以降の病変(腎臓から下の尿路結石など)が原因で数時間から数日の間に腎機能が著しく低下した状態です。1日の尿量が400ml以下になります。 慢性腎不全は糖尿病や慢性糸球体腎炎などの腎臓病が原因で、糸球体の能力が50%以下になった状態です。クレアチニンクリアランスという検査の数値が30~50ml/分になったころから、夜間の多尿などの症状が現れます。 ①ネフロンの壊死が始まり、その機能が中程度に障害された状態 ②ネフロンの壊死が進んだ状態。腎機能はかなり低下する 尿路結石 尿路結石は、尿の通り道である尿路に結石ができる病気の総称。結石がある場所により、 腎杯結石、腎盂結石、尿管結石、膀胱結石、尿道結石に分類されます。 進行過程 第1期 さほど肥大は進んでいないが、膀胱・尿道が刺激されるため下腹部に不快感がある。また、頻尿(とくに夜間の頻尿)がみられたり、排尿してもまだ尿が残っているような感じがする。 第2期 結節性腫瘤が中等度に肥大。尿が出るまでに時間がかかったり、排尿が終わるまでに時間がかかるようになる。残尿感、頻尿も強くなる。また、膀胱に尿が残るようにもなる。 第3期 前立腺全体が肥大すると尿道は閉じてしまう。膀胱の残尿量は300~400mlとなり、膀胱が拡大。残尿量がさらに増えると自分の意思で尿を出すことができず、絶えず尿が少量ずつもれ出る状態になる。
すい臓から分泌されるホルモン
消化・吸収を助けるすい液は、無色透明、無臭、わずかに粘り気をおびた液体で、三大栄養素である糖質、たんぱく質、脂肪を分解する消化酵素が含まれています。 糖質は、消化酵素によって「単糖」に分解・吸収されます。すい液に含まれる糖質分解酵素である、「アミラーゼ」は、でんぷんをまず二糖類(単糖類が2つ結合した物資。麦芽糖、ショ糖、乳糖など)に分解します。 さらに小腸でブドウ糖などの単糖類に分解されて吸収されます。 また小腸ではラクターゼが二糖類の乳糖を、ブドウ糖やガラクトースといった単糖類に分解します。 たんぱく質は、数種類のアミノ酸が数個~数十個つながった「ペプチド」という物質でできています。 すい液にはトリプシン、キモトリプシン、エラスターゼなどのたんぱく質分解酵素が含まれており、それぞれ独自にペプチドを切り離します。 切り離されたペプチドは、小腸でさらに分解されて吸収されます。また、エラスターゼには、線維を分解する作用もあります。 脂肪は、すい液に含まれるリパーゼなどの脂肪分解酵素によって、脂肪酸とグリセリンに分解・吸収されます。 また、すい液には消化酵素以外にも、すい管から分泌されるアルカリ性物質の重炭酸塩が多量に含まれています。これによってすい液は弱アルカリ性となり、強い酸性の胃酸を中和しています。 するホルモンを分泌 すい臓から分泌されるホルモンは、インスリンやグルカゴンなどで、血液中のブドウ糖の濃度(血糖値という)をコントロールするはたらきがあります。 インスリンは、血液中のブドウ糖を筋肉や肝臓のなかに取り込んだり、ブドウ糖からグリコーゲンをつくって肝臓に貯蔵するなどして、血糖値を下げます。 また、インスリンには、脂肪の分解を抑えて体内に蓄積するはたらきもあります。 グルカゴンは、血糖値が著しく低下したときに分泌されます。 肝臓に蓄えられたグリコーゲンからブドウ糖をつくって血液中に送り込んだり、体内のアミノ酸や脂肪から新たにブドウ糖をつくるなどして、血糖値を上昇させます。 また、脂肪細胞を刺激して、中性脂肪の分解を促す作用もあります。 さらにすい臓では、「ソマトスタチン」といって、インスリンやグルカゴンの分泌を抑制するホルモンも分泌されています。
すい臓の病気の仕組み(すい炎/すいがん/糖尿病)
すい臓は胃の後ろにあります。そのためすい炎やすいがんになると、上腹部の痛み・不快感のほか、食欲不振、消化吸収障害などが生じます。 急性すい炎と慢性すい炎があります。前者はすい臓が分泌する消化酵素(すい液)によって自身を消化してしまうもので、上腹部の激痛、発熱、吐き気・嘔吐などの症状がみられます。後者は、炎症によりすい臓の機能を担う細胞(実質細胞)が壊れて抜け落ち、その部分が線維化した状態です。発症当初は上腹部痛がありますが、病気が進むと痛みは軽減し、その代わりに消化吸収障害、糖尿病などを引き起こします。 すい臓から発生する悪性腫瘍で、約9割はすい管(すい臓のなかを網の目のように走る細い管)の細胞から発生します。初期には無症状または上腹部の不快感、食欲不振がみられる程度ですが、進行すると上腹部や背中の痛み、黄疸、腹部のしこりなどが現れます。また、糖尿病を発症することもあります。 軽い急性すい炎ではすい臓がむくんで腫れます。重症では消化酵素が細胞膜や血管などを破壊し、出血や赤黄色のまだら模様がみられます。
精子と射精のメカニズム
精子は精巣内にある多数の精細管でつくられています。 精子の頭部の大きさは、わずか0.005mm程度。からだのなかで一番小さな細胞です。 精子は、先端が突起状になった球体の頭部、楕円形の中間部、細い糸状になった尾部の3部位に分けられます。 精子頭部の中心には、23個の染色体をもつ細胞核があり、ここに父親の遺伝子を含んでいます。細胞核の外側は、先体という組織に包まれています。先体は、卵子に突入するための組織で、卵子の表面を覆う膜を溶かす酵素を含んでいます。 中間部には、精子が運動するためのエネルギーをつくるために、ミトコンドリアがらせん状に巻きついています。ミトコンドリアは、精液のなかの糖分を吸収し、そのエネルギーを尾部の鞭毛に与えています。 性的な興奮が高まると、陰茎内の陰茎海綿体と尿道海綿体の内部にある動脈がゆるみ、海綿体の細かい溝のなかに多量の血液が流れ込みます。そのため、海綿体はふくらみ、海綿体を外側から包んでいる白膜が、血液の圧力を受けて硬くなります(この状態が勃起です)。 勃起の際、精巣でつくられた精子は蠕動運動により精管を通って前立腺まで運ばれ、精のうの分泌液と混ぜられて精液となります。 このとき、精液の膀胱への逆流を防ぐために、膀胱の出口にある内尿道括約筋が収縮して、膀胱につながる尿道は閉じられます。同時に外尿道括約筋も収縮して、前立腺内の尿道内圧を高めます。 その後、外尿道括約筋だけが弛緩すると圧力で精液が押し出され、外尿道口から射精されます。
脊髄と脊髄神経のしくみ
脊髄の太さはほぼ小指大。長さ40~50cmの白くて細長い円柱状の器官です。 頭蓋骨に囲まれている脳と、背骨の脊柱管のなかに納まる脊髄は、神経管という1本の管を原型に進化したものです。神経管の前端がふくらんで脳となり、脊髄はその原型を残しています。 脊髄の断面では、中央に神経管の孔にあたる"中心管"という小さな孔があります。 中心管のまわりは神経細胞が集まり、灰白質になっており、灰白質はHの形をしています。その腹側のでっぱりに前角といい、筋を動かす神経細胞体が集まっています。 灰白質の周囲は白質になっていて、ここには脳の各部と脊髄を結ぶ神経線維が集まっています。 脊髄を保護するしくみは2重構造になっています。外層に位置する脊椎骨組織の内側には、脊髄を包む内層があり、硬膜、くも膜、軟膜の3層からなっています。 脊髄神経は、脊髄から31対出ている神経です。 脊椎の部位にあわせ、頸神経(8対)、胸神経(12対)、腰神経(5対)、仙骨神経(5対)、尾骨神経(1対)に区分されています。1対ずつ前面から出る"前根(運動神経)"と、後面から出る"後根(知覚神経)"があります。 脊髄の長さは脊柱管よりも短く、腰椎の1番程度までであり、その先は脊髄神経のみからなっています。 脊髄には、脳への信号、脳からの信号を伝える神経線維が通っているため、脊髄の一部が損傷すると、それより下の部位は脳と連絡できず、運動麻痺と知覚麻痺をおこします。
尿酸値検査の目的
高尿酸血症の有無をチェック 採血して、血液中に含まれる尿酸の量(尿酸値)を計ります。通常、尿酸の8割は尿とともに、残り2割は汗や便とともに排泄されるので、生産と排泄のバランスがとれていれば、尿酸値は基準値の範囲内におさまっています。 しかし、何らかの原因で生産と排泄のバランスが崩れると、血液中に尿酸が増え、尿酸値は上昇します。 ただ、尿酸値は食事や飲酒、運動などの影響を受けやすいものです。絶食、脱水、強度の運動、大量の飲食などで尿酸値は上昇するので、検査前は注意が必要です。また、薬の影響で尿酸値が低値になることがあります。 尿酸値の平均は、男性で約5.5mg/mg、女性で約4.5mg/dlです。基準値は2.1~7.0mg/dl以下とされています。尿酸が血液中に溶けることのできる限度は7.0mg/dlなので、7.1mg/dl以上は高尿酸血症となります。 尿酸値は、尿酸プールから尿酸があふれ出したときに高くなります。そして、尿酸プールがあふれる原因には、以下の3つのタイプがあります。 ①尿酸の排泄量が少な過ぎる (排泄低下型) ②尿酸が多くつくられ過ぎている (過剰生産型) ③過剰生産型と排泄低下型が混合している(混合型) 過剰生産型の原因としては、プリン体代謝の障害や、プリン体を多く含む食品のとり過ぎなどが考えられます。 一方、排泄低下型の原因としては、尿酸をろ過する腎臓の機能低下が考えられます。 両者のおおもとの原因ははっきり解明されていませんが、高尿酸血症は男性に圧倒的に多く、そのほかには遺伝的な体質や生活習慣、肥満や糖尿病が深くかかわっていることがわかっています。また、降圧薬の一種など薬の影響で尿酸値が高くなることもあります。 尿酸値が高いだけでは、これといった自覚症状はありません。しかし、高尿酸血症を放置していると、ある日突然、足の親指の激痛におそわれることがあります。「痛風」の発作です。高尿酸値の第一の問題点は、この痛風発作です。 7.0mg/dl以上の高尿酸値が長年にわたって持続していると、血液中に溶け切らなかった尿酸が、足の親指などの関節のなかで尿酸ナトリウムという結晶(尿酸結晶)をつくります。 尿酸結晶は体内で異物と認識され、白血球がこれを排除するため集まってきて、炎症をおこします。痛風発作とは、尿酸結晶を排除するためにおこった炎症なのです。 また、高尿酸血症は、全身にさまざまな合併症をもたらします。 まず、体内の尿酸が増えると、尿酸を排泄する腎臓や尿路に結晶がたまり、腎不全や腎結石、尿路結石などをおこしやすくなります。 さらに、高尿酸血症は糖尿病や肥満をはじめ、高血圧や脂質異常症などの生活習慣病を合併することが多く、結果、動脈硬化を促進し、脳卒中や心筋梗塞を引き起こすことがあります。
拍動のメカニズム
心臓は、心筋が規則的に収縮と弛緩を繰り返すことによって、一定のリズムで拍動を続けています。 心臓が休むことも大きく乱れることもなく、規則正しく拍動を続けていられるのは、"刺激伝導系"というメカニズムのおかげです。 刺激伝導系の発端は、心臓の運動の司令塔である"洞房結節(右心房の上端にある)"から「動け」という電気刺激の信号が発せられることです。 その信号は右心房の壁を通り、右心室との境界周辺にある房室結節に伝わります。さらに、そこからヒス束→プルキンエ線維(拍動の刺激を伝達する最終部分)に伝わり、最終的に信号に反応した心筋が収縮して拍動が生じます。 この電気信号は、房室結節でとてもゆっくりと伝えられるため、心房と心室では収縮に時間差ができます。 この時間差があることで、心房が収縮し、血液を心室に充満させ、次いで心室が収縮して血液を排出するという流れがスムーズに行われるのです。 血液の循環にあたって、避けなければならないのが血液の逆流です。そこで、血液が一方向だけに流れるように働いているのが、心臓内にある4つの弁です。右心房と右心室の間にある「三尖弁」、左心房と左心室の間にある「僧帽弁」、そして肺動脈への出口にある「肺動脈弁」、大動脈への出口にある「大動脈弁」がそれです。 心臓が静脈から血液を取り込むときには三尖弁と僧帽弁が開き、肺動脈弁と大動脈弁が閉じます。逆に、血液を送り出すときは三尖弁と僧帽弁が閉じ、肺動脈弁と大動脈弁が開くというように、交互に開閉を繰り返して血液の逆流を防いでいます。 安静時と運動時では、心拍数や心拍出量を調節する必要があります。 調節機能としては、心筋が引き伸ばされる力に比例して、心筋細胞自体が収縮力を増すこと。また、自律神経(交感神経、副交感神経)から発せられるシグナルによって、心筋がその時々に必要な心拍をおこし、血液を全身に送り出すことなどがあげられます。 からだの各部位に必要なだけの血液を送る調節は、安静時では毎分の心拍数が70回、心拍出量は5.5L程度ですが、激しい運動を行った直後には、毎分の心拍数は200回以上、血液の拍出量は25Lにも達します。