胃の構造とはたらき
胃は袋状の臓器で、長さは成人で約25㎝。からだの中心よりやや左よりの、左上腹部からへその間に位置しています。 胃の容積は、空腹時には50ml以下ですが、食後には1.5l、詰め込めば2lにもなります。口腔から肛門まで連なる消化管のなかで、もっとも大きな容積をもつ臓器が胃です。 胃は食道から送られてきた食べ物を消化しながら、小腸の受け入れを待ちます。そして、少しずつゆっくりと、粥状になった食べ物を小腸の最初の部分である十二指腸へ送り出します。このように、食べ物を一時的に蓄えること、胃液(塩酸とペプシン)によって、たんぱく質を分解することが胃の二大機能です。 食べ物が胃を通過するのに要する時間は、液体ならば数分以内、固形物では1~2時間程度です。しかし、脂肪を多く含む脂っこい食べ物は、3~4時間ほど胃にとどまります。 食道とつながる胃の入り口部分を「噴門」、胃の天井に当たる部分を「胃底」、胃の大部分を占める中央部を「胃体」、そして十二指腸とつながる胃の出口部分を「幽門」と呼びます。 幽門は括約筋という筋肉でできています。括約筋は輪状の筋肉で、胃の出口を閉じたり開いたりすることによって、胃の内容物の貯留・排出を調節しています。「括る」という文字にあるように、バルブのような役割をもつ筋肉といってもよいでしょう。 幽門は、食べ物が中性か弱酸性ならば開きますが、強い酸性の場合は、十二指腸の内壁が酸でただれないよう、反射的に閉じるようになっています。 胃液は、胃の内側を覆う粘膜の「胃腺」から分泌されます。胃腺には、①「塩酸」を分泌する「壁細胞」、②「ペプシノーゲン」「胃リパーゼ」を分泌する「主細胞」、③胃壁を守る「粘液」を分泌する「副細胞」の3つの細胞があります。胃底部や胃体部の胃腺からは塩酸やペプシノーゲンが多めに分泌され、噴門と幽門の胃腺からは粘液が多めに分泌されます。 塩酸、ペプシノーゲン、粘液が合わさって胃液となりますが、塩酸には食べ物を殺菌して、腐敗・発酵を防ぐはたらきがあります。 ペプシノーゲンは、たんぱく質を分解する強力な消化酵素「ペプシン」の前駆物質です。 ペプシノーゲンは、壁細胞が分泌する塩酸に活性化されて、ペプシンに変化して初めて機能します。副細胞が分泌する粘液は、塩酸で胃壁がただれないよう防御する役割を果たします。
血中脂質検査の目的
脂質異常症(高脂血症)の有無をチェック 血液検査によって、血液中の「総コレステロール」「中性脂肪」「LDLコレステロール」「HDLコレステロール」を測定し、脂質異常症の有無を調べます。脂質異常症は、LDLコレステロールが過剰になる「高LDLコレステロール血症」、HDLコレステロールが少なすぎる「低HDLコレステロール血症」、中性脂肪が過剰になる「高中性脂肪血症」の3つに分類されます。 血中脂質が基準値から外れるもっとも大きな要因は、やはり生活習慣にあるといえます。高カロリーの食事、コレステール・脂肪・糖分を多く含む食品の食べ過ぎやアルコールの飲み過ぎは、コレステロールや中性脂肪を増加させます。また、運動不足は脂質の代謝能力を低下させ、中性脂肪の蓄積につながります。さらに、喫煙はHDLコレステロールを減らして、LDLコレステロールを優位にするといわれています。 そのほかの要因としては、ほかの病気が原因で、二次的に脂質異常を来す場合です。脂質異常の原因となる病気には、甲状腺機能低下症、糖尿病、クッシング症候群、ネフローゼ症候群、尿毒症、原発性胆汁性肝硬変、閉塞性黄疸、膠原病などがあげられます。また、遺伝性の高コレステロール血症や高中性脂肪血症もあります。 服用中の薬が原因で脂質異常症になることもあります。なかでも服用者がとくに多いのが高血圧に用いられる降圧薬です。そのほかにも、副腎皮質ホルモン薬、向精神薬、女性では経口避妊薬(ピル)や、更年期障害などに用いられる女性ホルモン薬などが原因となります。 高LDLコレステロール血症、低HDLコレステロール血症、高中性脂肪血症といった脂質異常は、動脈硬化を促進して、脳卒中や心臓病のリスクを高めます。 LDLそのものは、全身に必要なコレステロールを供給するという重要な役目を担っており、決して悪玉ではありません。しかし、血液中のLDLが過剰になると、LDLは動脈の内膜の傷から内部に侵入し、動脈壁に蓄積していきます。結果、動脈壁は厚く硬くなり、粥状動脈硬化が進んで行くのです。 一方、HDLは余分なコレステロールを回収してくれるので、動脈硬化を抑制します。しかし、HDLが少ないと、余分なコレステロールが十分に回収されず、たまったままになります。つまり、LDLとHDLのバランスがとれていれば、動脈硬化にはなりにくく、両者のバランスが崩れてLDLが優位になると、動脈硬化を促進してしまうということです。 また、中性脂肪が過剰になると、それに反比例するように、HDLが減ることがわかっています。さらに、中性脂肪が高くなると、LDLが小型化したLDL、「スモール・デンス・LDL」が増加します。小型化したLDLは、もっているコレステロールは少なくなるものの、動脈壁に侵入しやすくなっています。このことから、小型化したLDLは"超悪玉コレステロール"とも呼ばれており、通常のLDLよりもさらに質が悪くなっているということです。また、同じコレステロール量でも、小型化したLDLをもっている人は、心筋梗塞に3倍かかりやすいといわれています。 動脈硬化に直接悪影響を及ぼすのはLDLですが、中性脂肪も間接的に動脈硬化促進に働きます。また、HDLは低下することでLDLを野放しにし、動脈硬化を間接的に促進します。
血液(血球)のプロフィール
血液は赤血球、白血球、リンパ球、血小板を含めた有形成分(細胞)が40~45%、液体成分の血漿が55~60%で構成されています。有形成分は、ほとんどが赤血球であり、白血球やリンパ球、血小板は1%程度しか含まれていません。 血液は心臓から血管を流れて、からだのすみずみまで酸素と栄養を運び、二酸化炭素や老廃物を回収して、再び心臓へ戻ってきます。 また、血液は体内に侵入してきたウイルスや細菌を白血球で撃退したり(免疫構造)、血管壁が破損したときに凝固して破損個所を修復したりします。さらには、各器官のはたらきを調整するための"情報伝達"の役目も担っています。 血液成分の約半分を占める赤血球は、直径6~9μm(1μm=1000分の1mm)。中央がへこんだ円盤状の細胞です。 その名のとおり赤色で、核をもたず柔軟性に富み、簡単に変形可能なため、毛細血管の薄い壁を通過できます。 からだ全体の血液中には、20~25兆個もの赤血球が存在し、酸素を運び、二酸化炭素を回収する工程を繰り返しています。主成分はヘモグロビンという鉄を含む色素です。 赤血球は約4カ月で寿命を迎え、時期がくると肝臓や脾臓で破壊されますが、ヘモグロビンは胆汁の成分、ビリルビンとして再利用されます。 白血球は無色で細胞内に核をもっています。 白血球には「顆粒球」「リンパ球」「単球」の3つの種類があります。1m3に6000個程度存在し、血流にのり全身を巡ります。 顆粒球は、好塩基球、好中球、好酸球に分かれ、それぞれが殺菌物質を放出します。 リンパ球にはヘルパーT細胞、キラーT細胞、B細胞、ナチュラルキラー細胞があり、B細胞は体内に侵入した病原体を攻撃する抗体をつくります。 単球は不要になった細胞を取り込み、マクロファージとなって破壊するなど、外敵の侵入を感知し、攻撃します。 血小板は核のない細胞で、骨髄のなかにある細胞、巨核球の一部がちぎれた断片からできています。通常は円形をしていますが、活動するときには突起を出して形を変化させます。 血小板は損傷部分から血液の流出(出血)があると損傷部位に集まり、一時的に傷口をふさぎます。 その後、血液中のたんぱく質である"フィブリノーゲン"が糸状のフィブリンに変化し、そこに赤血球や白血球がからみついて、血液のかたまりをつくります。さらに血漿のなかにある凝固因子に働きかけて止血します。 血漿は、淡黄色をした血液の液体成分です。約9割が水分であり、そのほかは血液の浸透圧(水分)を調整するアルブミン、外敵を攻撃するグロブリン、血液凝固を助けるフィブリノーゲンなどのたんぱく質、ブドウ糖、アミノ酸、脂肪、塩化ナトリウム、イオンなどで構成されています。 主に、水分、塩分、無機質などの栄養やホルモンを溶かし込み、必要な場所まで運んで栄養として与え、そこから老廃物を引き取るはたらきをします。
背骨が神経をガードするしかけ
脊椎を構成する椎骨は、前方部の椎体と、後方部にいくつもの突起が連なる椎弓からなります。 椎弓は上下の椎弓とうまく組み合わさって、関節をつくっています。また、椎体と椎弓の間には脊柱管と呼ばれる管状の隙間があり、ここを脊髄やたくさんの神経線維が通っています。 また、脊髄神経をガードしている背骨のサポート役を担っているのが椎間板と靱帯です。 椎体の一つ一つの骨の間には、椎間板と呼ばれる円形の線維軟骨があります。椎間板は、ゼラチン状の髄核とコラーゲンを含む線維輪で構成され、運動などによる椎体にかかる衝撃を吸収するクッションになっています。 さらに、椎間板のつなぎ目を靱帯が補強し、椎体や椎間板が飛び出さないように束ねています。 背骨は、からだの中心の骨格としてからだの動きを支えながら、外部の衝撃から脳や脊髄を保護している、まさにからだの大黒柱なのです。 脊柱管(脊髄腔)のなかを通っている脊髄は、延髄の尾側から始まり、第一腰椎と第二腰椎の間で脊髄円錐となって終わり、その先は終糸と呼ばれるひも状の線維につながっていきます。 脊髄から直接出ている神経を神経根と呼び、神経は脊柱管から出る位置によって、頸神経、胸神経、腰神経、仙骨神経、尾骨神経となります。 また、脊髄は脊椎より短く、第1腰椎より下の脊柱管は神経根だけのびていて、その部分を馬尾神経と呼びます。
通風のメカニズム
ある日突然、足の親指の付け根の関節が赤く腫れ、激烈な痛みに襲われる―。痛風発作がおこる背景には、血液中に過剰にあふれ出した尿酸があります。症状は1週間から10日ほどでおさまりますが、油断すると再び同じような発作を繰り返すようになり、やがて腎臓などの内臓も障害されていきます。 血液中の尿酸値が高くなると、余分な尿酸がナトリウム結合して「尿酸塩結晶」がつくられ、関節軟骨やその周辺に沈着します。尿酸塩結晶が関節液中にはがれおちると、体の防御機能を担う白血球の一つである「好中球」を中心とした血液細胞は、結晶を排除しようとして、炎症反応がおこります。これが、激痛や腫れといった痛風発作の原因です。 尿酸塩結晶に攻撃を仕掛けた好中球は、たんぱく分解酵素を含むファゴリソソーム内に尿酸塩結晶を取り込むものの、分解できずこわれてしまいます。このときに関節液中に放出されるリソソーム内の酵素が炎症をおこすもっとも重要な因子です。他にも、血小板からセロトニン、マクロファージからインターロイキン、好中球から活性酸素などさまざまな物質の放出が炎症に関係しています。
尿酸値検査の目的
高尿酸血症の有無をチェック 採血して、血液中に含まれる尿酸の量(尿酸値)を計ります。通常、尿酸の8割は尿とともに、残り2割は汗や便とともに排泄されるので、生産と排泄のバランスがとれていれば、尿酸値は基準値の範囲内におさまっています。 しかし、何らかの原因で生産と排泄のバランスが崩れると、血液中に尿酸が増え、尿酸値は上昇します。 ただ、尿酸値は食事や飲酒、運動などの影響を受けやすいものです。絶食、脱水、強度の運動、大量の飲食などで尿酸値は上昇するので、検査前は注意が必要です。また、薬の影響で尿酸値が低値になることがあります。 尿酸値の平均は、男性で約5.5mg/mg、女性で約4.5mg/dlです。基準値は2.1~7.0mg/dl以下とされています。尿酸が血液中に溶けることのできる限度は7.0mg/dlなので、7.1mg/dl以上は高尿酸血症となります。 尿酸値は、尿酸プールから尿酸があふれ出したときに高くなります。そして、尿酸プールがあふれる原因には、以下の3つのタイプがあります。 ①尿酸の排泄量が少な過ぎる (排泄低下型) ②尿酸が多くつくられ過ぎている (過剰生産型) ③過剰生産型と排泄低下型が混合している(混合型) 過剰生産型の原因としては、プリン体代謝の障害や、プリン体を多く含む食品のとり過ぎなどが考えられます。 一方、排泄低下型の原因としては、尿酸をろ過する腎臓の機能低下が考えられます。 両者のおおもとの原因ははっきり解明されていませんが、高尿酸血症は男性に圧倒的に多く、そのほかには遺伝的な体質や生活習慣、肥満や糖尿病が深くかかわっていることがわかっています。また、降圧薬の一種など薬の影響で尿酸値が高くなることもあります。 尿酸値が高いだけでは、これといった自覚症状はありません。しかし、高尿酸血症を放置していると、ある日突然、足の親指の激痛におそわれることがあります。「痛風」の発作です。高尿酸値の第一の問題点は、この痛風発作です。 7.0mg/dl以上の高尿酸値が長年にわたって持続していると、血液中に溶け切らなかった尿酸が、足の親指などの関節のなかで尿酸ナトリウムという結晶(尿酸結晶)をつくります。 尿酸結晶は体内で異物と認識され、白血球がこれを排除するため集まってきて、炎症をおこします。痛風発作とは、尿酸結晶を排除するためにおこった炎症なのです。 また、高尿酸血症は、全身にさまざまな合併症をもたらします。 まず、体内の尿酸が増えると、尿酸を排泄する腎臓や尿路に結晶がたまり、腎不全や腎結石、尿路結石などをおこしやすくなります。 さらに、高尿酸血症は糖尿病や肥満をはじめ、高血圧や脂質異常症などの生活習慣病を合併することが多く、結果、動脈硬化を促進し、脳卒中や心筋梗塞を引き起こすことがあります。
骨の構造
骨は、とても小さな骨細胞(骨芽細胞)の集合体が石灰質化したものです。よくみると複雑な構造をしていて、血管も無数に通っています。 骨の構造は、表面を覆う白色の結合組織である骨膜、その内側の硬い骨質からなる緻密骨、内部に骨髄を含む柔軟な骨質の海綿骨という3層からなります。 骨膜には、神経・血管・リンパ管が通っていて、刺激伝達や栄養の運搬という仕事を担い、骨の成長をつかさどります。 そして、骨膜と緻密骨は、シャーピー線維(結合線維)でしっかりと結合されています。 主成分のカルシウムやリンが厚く沈着した骨質をもつのが、緻密骨です。 緻密骨の中央には、ハバース管という血管を通す管があり、骨細胞に栄養を運ぶ役目を担っています。ハバース管を緻密質の骨が幾重にも包み込んで緻密骨の1単位となり、それが集合体となっています。 そして、緻密骨の集合体の内側には、マングローブの根っこのように密集した柔らかな海綿質でできた海綿骨があり、脊髄を覆っています。 中心にある骨髄腔は、骨はなく空洞になっています。 骨髄腔のなかは、血液をつくる成分の骨髄で満たされています。
リンパ系の構造とはたらき
からだのなかには、リンパ管という細い管のネットワークが張り巡らされています。 リンパ管は、全身に網の目のように広がっている細いリンパ管(毛細リンパ管)が、合流しながら太くなっていきます。 右側上半身のリンパ管は、合流を繰り返しながら、右リンパ本幹(右胸管)へ、それ以外は左リンパ胸管(胸管)につながります。最終的には右リンパ本幹は内頸静脈へ、左リンパ胸管は鎖骨下静脈へと合流し、血液に戻ります。 毛細リンパ管の壁は内被細胞でできていて、随所に細胞の間が開いている所があり、その隙間からリンパ球を含む組織液がしみ出てリンパ液となります。リンパ管を通って静脈に戻るリンパ液は、心臓から動脈を通り、毛細血管から再びしみ出してリンパ管に入り、循環します。 リンパ管の合流地点の要所には、リンパ節(リンパ腺)と呼ばれる豆状にふくらんだ器官があります。1~20mmという大きさで、数は全身に約800個。首、わき、ひじ、ひざ、足の付け根となる鼠径部など、四肢や頭と体幹をつなぐ関節部に集中しています。 リンパ節は、ケガなどをして細菌などが体内に入った場合、それらをせき止める場所です。細菌が血液に混入するのを防ぐため、傷を負った部位から近いリンパ節で細菌を捕え、その場にとどめます。 そのため、傷口とは別に"リンパ節が腫れる"などの炎症をおこしますが、リンパ節より先に細菌を通さない"関所"の役割を担っているのです。 リンパ液の成分は、血漿とほぼ同じです。しかし、たんぱく質量は少なく、白血球の一部であるリンパ球が含まれています。 リンパ球には、ヘルパーT細胞、キラーT細胞、B細胞、ナチュラルキラー細胞など複数の種類があります。これらは、侵入してきた病原体を攻撃するというはたらきは同じですが、複数の菌に対処できるように、それぞれ攻撃相手となる外敵を違えています。 また、B細胞やT細胞、マクロファージ、樹状細胞などの免疫細胞は、胸腺、脾臓、リンパ節、パイエル板、扁桃、虫垂、赤色骨髄といった付随的なリンパ組織を足場に使って、からだを循環しています。