咽頭・喉頭の3つのはたらき
鼻腔、口腔から食道の上端までを咽頭と呼びます。 咽頭は、食物を食道に送る通路と、空気を気管に送る通路が交差する場所です。 咽頭の中ほどにある軟口蓋と、喉頭の上部にある喉頭蓋を使って、鼻腔から運ばれた酸素を気管へ、口腔から運ばれた食物を食道へと、それぞれ振り分けています。 口や鼻から酸素を取り入れる際に侵入する病原菌に対し、その防御機構として、のどにはリンパ球の集合組織である扁桃があります。 扁桃には、咽頭扁桃、耳管扁桃、口蓋扁桃、舌根扁桃の4種類があります。俗に"扁桃腺"と呼ばれるのは口蓋扁桃のこと。口を開けたときに喉の奥、両側に見える部分です。 喉頭は、咽頭の下、気管への入り口付近にあり、甲状軟骨、輪状軟骨などの軟骨に囲まれています。 成人男性では、甲状軟骨の一部が突起して首の全面に飛び出しており、"のどぼとけ"と呼ばれています。 哺乳類は喉頭をもちますが、その形状は咽頭のなかに高く飛び出す形で鼻腔の後ろにはまりこんでおり、空気を通すだけのはたらきです。 人間の喉頭は低く、咽頭のなかにわずかに飛び出している形状になっています。そのため、通常、人間の喉頭は咽頭のなかで開いており、食物が通るときだけ喉頭蓋によってふさがれるというしくみになっています。空気と食物の通り道で、その交通整理をするのが喉頭というわけです。 声帯は、喉頭の中央にあるひだ状(声帯ひだ)の器官で、弾力性の高い筋肉からできています。 前方は甲状軟骨、後方は披裂軟骨につながっています。左右の声帯ひだの隙間が声門です。 喉頭筋が声帯を開閉させて、声門が伸縮します。呼吸時には大きく開き、声を出すときにはゆるやかに開閉します。肺から吐き出された空気がゆるやかに開閉される声門を通るとき、声帯に振動を与え、声となって発せられます。 声は、出すときに声帯が振動する数やその大きさにより、高低、大小の違いがあります。 声帯の長さは男性およそ20mmに対し、女性はおよそ16mm。その厚みも若干男性のほうが厚く、女性が薄くなっています。女性のほうが声帯は振動しやすく、高い声になります。思春期以降の男性はのどぼとけができることから、より声帯が長く、厚くなり、振動しにくくなるため、声が低くなります。 声門が閉じて、声帯の振幅が大きいと声は大きく、声門を少し開いて、振幅が小さいと声は小さくなります。 カラオケで熱唱したり、大声で怒鳴ったり……。そんな声の酷使が粘膜の充血をまねきます。 粘膜が充血した状態のまま、さらに大声を張り上げるなどして、声帯に激しい刺激が加わると、粘膜下の血管が傷害されて血腫ができます。 安静にしていれば、血腫が吸収される可能性もありますが、そのまま声帯を酷使し続けるとポリープ(良性腫瘍)になります。 声帯ポリープの症状は、主に声がれですが、同時にのどや発声時の違和感などの症状が出る場合もあります。 治療法としては、一般的には、喉頭顕微鏡下手術(ラリンゴマイクロサージェリー)が用いられますが、手術を希望しない場合や、全身麻酔が不可能な場合は、外来でファイバースコープを用いた摘出術を行います。 手術後は、声帯の傷の安静のため、1週間前後の沈黙期間が必要になります。 予防法としては、声をなるべく使わないようにし、声やのどに違和感があるときは、のどの安静を心がけます。また、お酒やたばこも控えるようにします。 のどを安静にしてから2週間たっても改善されないようなら、耳鼻咽喉科を受診し、喉頭がんなどほかの病気がないか、検査が必要です。
血圧検査の目的
高血圧の有無をチェック 血圧検査は、高血圧の有無や高血圧をもたらす病気を調べるための検査です。心臓がもっとも強いポンプ力で血液を送り出す"収縮期"の血圧と、心臓、静脈から血液を戻す"拡張期"の血圧を測定します。 医療機関の血圧測定では、正確な数値が得られる「水銀血圧計」を用いて、上腕動脈の血圧を測定します。 上腕動脈は心臓に近く、心臓に直結する大動脈起始部の血圧が反映されるため、心臓の状態を知る重要な手がかりになるからです。 実際の検査では、上腕部にカフ(駆血帯)を巻き、カフに空気を送って締め付け、空気を抜きながら測定します。 血圧は"心拍出量"と"血管抵抗"によって決められます。 たとえば、激しい運動をしているときは、心臓は心拍数を上げて大量の血液を送り出すため、血圧が上昇します。 また、気温が低いときや精神的に緊張したときなどは、末梢血管が収縮し、血管の抵抗性が高まるため、心臓は強い圧力で血液を送り出します。結果、やはり血圧は上昇します。 逆に、睡眠中やリラックスしているときは、それほどたくさんの血液を必要としませんから、心拍数も血圧も下がっています。 こうした心臓のはたらきや血圧は、自律神経によって自動的に調節されています。運動時や興奮状態にあるときは、交感神経が優位に働き、血圧が上がります。一方、安静時には副交感神経が優位となり、血圧は下がります。 日内変動 血圧は1日のなかで数値が変動します。 一般的には起床時に大きく上昇し、昼食時にピークとなります。夕方以降はゆるやかに低下し、睡眠時はもっとも低い状態で安定します。 日常の動作、行動、生活習慣など 血圧は食事、入浴、排泄、運動時などのほか、ストレスや喜怒哀楽などの興奮状態のときに上昇します。また、喫煙や飲酒などの生活習慣も、血圧を上昇させる大きな要因となります。 環境 血圧は、寒暖の差が激しいとき(10度以上の温度差)、季節の変わり目、冬の寒さなどのストレスによって上昇します。季節では、春から夏にかけては比較的低く、秋から冬にかけて高くなります。 ほかの病気との関連 血圧は脂質異常症、糖尿病、高尿酸血症、肥満、腎臓病、ホルモンの病気などと深い関連があります。 正常範囲を超えた血圧を長期間放置していると、血圧の負担のかかる血管や臓器が障害され、さまざまな合併症がおこってきます。 合併症をもたらす代表は、動脈硬化です。動脈硬化が進行すると、とくに脳、心臓、腎臓に深刻な合併症を引き起こします。 脳の血管の動脈硬化が進むと、脳出血や脳梗塞、くも膜下出血などの危険が高まります。また、心臓では、狭心症や心筋梗塞をおこしやすくなります。 いずれも命にかかわる重大な病気です。また、腎臓の細動脈や糸球体が硬化する腎硬化症では、腎機能の低下から腎不全に至ることもあります。 日本高血圧学会では、収縮期血圧140mmHg以上、拡張期血圧90mmHg以上を高血圧とし、治療の対象とされています。しかし、メタボリックシンドロームの診断基準では、収縮期血圧130mmHg以上、拡張期血圧85mmHg以上(いずれか、あるいは両方)であれば、内臓脂肪蓄積の改善をはじめとする生活改善が必要とされています。
血液循環と血管の構造
血液循環を構成する2つのルート―。その1つは、心臓の左心室から大動脈に拍出された血液が、中動脈→小動脈→細動脈→微細動脈→毛細血管の順に進んで全身を流れ、微細静脈→細静脈→小静脈→中静脈→上大静脈・下大静脈へと合流を繰り返しながら右心房に戻ってくる「体循環」です。 体循環で血液がからだを一周する時間は、約20秒といわれています。このわずかな時間で、血液は左心室を出発し、からだ中を巡りながら必要な部位でガス交換、すなわち酸素を届け、不要な二酸化炭素を引き取って右心房に戻ってきます。 もう一方のルートは、右心房→右心室→肺動脈を経由して肺に入り、肺静脈を通って左心房に戻ってくる「肺循環」です。このコースは、右心房を出てから3~4秒という短時間で血液が心臓に戻ってきます。 肺循環では、体循環のルートを通って心臓に戻ってきた血液から、二酸化炭素や老廃物などを取り除いて、再度、酸素を多く含んだ新鮮な血液に再生するため、肺のなかでガス交換を行ったのち、心臓へと戻します。 肺循環を終えた血液は左心房、左心室を経由して大動脈から再び体循環のルートへと進みます。 血液は、常に体循環、肺循環を交互に繰り返して体内を循環しているのです。 血管は血液が流れるパイプラインであり、パイプの内側にあたる"内腔"と、パイプの外壁となる"血管壁"からできています。 動脈と静脈では構造的な差異が若干あり、まず動脈は内腔が狭く、内側から、薄い「内膜」、厚い「中膜」、「外膜」の3層の膜が重なる厚い血管壁に囲まれ、弾力性に富んだ構造になっています。 また、太い動脈と細い動脈では、それぞれ役割が異なります。大動脈のように太い動脈は、弾力性に富んで心臓からの強い血流を受け止めて、血流を和らげる役割を担います。俗に"弾性血管"と呼ばれています。 細い動脈は"抵抗血管"とも呼ばれ、心臓からの圧力に抵抗して血液量を調整しています。心臓から送られてきた血液を、どこにどれだけ流すのかを分配します。 一方、静脈は体循環から心臓に戻る血液のラインで、体内の二酸化炭素や老廃物を吸収した血液が流れています。動脈同様に3層の膜で血管壁を形成していますが、内膜、中膜ともに薄く、平滑筋や弾性線維も少ないため、血管壁の弾力が強くありません。 静脈を流れる血液は体内の約75%。血管の数も動脈より多く、太いため、逆流を防ぐために弁がついています。さらに手足の筋肉の動きを"血液の流れをサポートするポンプ"として利用し、ゆるやかなスピードで心臓に血液を戻します。 これら動脈と静脈の間には、直径1mmにも満たない(約1/100mm)毛細血管が無数にあり、両者間を網の目状に走っています。 毛細血管の血管壁は、動脈や静脈に比べて薄く、内皮細胞、基底膜、周皮細胞などからできています。平滑筋はありません。
食道のはたらき・食道の構造
食道は、のどと胃をつなぐ細長い管状の器官です。胃や腸などと同じ消化器官の一つですが、消化の機能はなく、食べ物を胃へと運ぶための輸送路として働いています。 食道の長さは成人で25㎝~30㎝ほどあり、長径約2㎝、短径約1㎝の楕円形をしています。ふだん食道は前後につぶれて閉じており、食べ物が通るときにだけ、大きく広がります。 食べ物は、液体で1秒~10秒、固形物で30秒~60秒ほどで、食道を通過していきます。 食道は3つのセクションに分けられます。のどから鎖骨の辺りまでが「頸部食道」。「胸部食道」は最も長く、大動脈、気管支、心臓など重要な器官と隣り合っています。そして、横隔膜から食道・胃接合部(噴門部)までの最も短い部分が「腹部食道」です。 また、食道には生理的狭窄といって、もともとくびれて狭くなっている部分が3カ所あります。食道の入り口部分の「第1狭窄部」。「第2狭窄部」は気管支が交差する部分。「第3狭窄部」は、胃液が逆流しないよう狭くなっています。 これら狭窄部にはがんができやすく、"食べ物がつかえる"などの違和感がある場合は要注意です。 食道の壁は厚さが約4mm。一番内側は「粘膜」で覆われています。この粘膜は、食べ物が通過しやすいよう、また食道が食べ物で傷つかないよう丈夫で滑らかな「重層扁平上皮細胞」という組織でつくられています。 粘膜の外には、「粘膜筋板」という薄い筋肉の層があり、その外は「粘膜下層」といいます。 粘膜下層のさらに外には、「輪状筋」と「縦走筋」からなる固有筋層があり、食道の蠕動運動を担っているのがこれら筋肉の層です。そして、いちばん外側は「外膜」という膜状の結合組織で覆われています。
受精と排卵のメカニズム
思春期になると、脳の下垂体から"卵胞刺激ホルモン"と、"黄体ホルモン"が分泌され、卵巣内膜内の原始卵胞(成熟していない卵胞)が活動を始めます。 卵胞が成熟(成熟卵胞)すると卵胞の膜が破裂し、なかの卵子は卵巣の外に排出されます。この状態が「排卵」です。 卵巣からの排卵は月に一度、月経周期に合わせて、左右どちらかの卵巣から行われます。 排卵が終わった卵胞は黄体に変わり、プロゲステロン(黄体ホルモン)とエストロゲン(卵胞ホルモン)を分泌します。 このホルモン分泌で子宮内膜に厚みが増し、受精卵が着床しやすくなります。 排卵された卵細胞(卵子)は卵管に取り込まれ、厚みが増した内膜の子宮へと送られます。 受精はこの卵管内で行われ、受精卵となって子宮内膜に着床します。受精をしなかった場合、厚みを増した内膜ははがれ落ち、受精しなかった卵子や血液とともに、膣から"経血"として排出されます。 月経の周期には、個人差がありますが、平均28日周期で、5日間続きます。 月経後は次の排卵への準備が始まります。排卵日は次の月経開始日の14日前です。 卵子は、直径0.1~0.2mm。人体でもっとも大きな細胞です。卵子の外側は顆粒膜細胞が囲み、内側にはたんぱく質でできた透明帯という膜が張り、さらにその内側に、母親の遺伝子を伝える23本の染色体をもつ核が入った卵細胞質があります。 卵子の元となる始原生殖細胞は、胎児の頃から存在しています。始原生殖細胞は、胎児のうちから卵原細胞→卵祖細胞→卵母細胞へ姿を変えて、卵胞という袋のなかで休眠期に入ります。この状態が原始卵胞です。 やがて思春期になると、休眠していた卵母細胞が活動を再開し、数回の減数分裂を繰り返し、23個の染色体をもつ細胞になります。このうち、たった1つの細胞が卵子となり、それ以外は消滅します。
拍動のメカニズム
心臓は、心筋が規則的に収縮と弛緩を繰り返すことによって、一定のリズムで拍動を続けています。 心臓が休むことも大きく乱れることもなく、規則正しく拍動を続けていられるのは、"刺激伝導系"というメカニズムのおかげです。 刺激伝導系の発端は、心臓の運動の司令塔である"洞房結節(右心房の上端にある)"から「動け」という電気刺激の信号が発せられることです。 その信号は右心房の壁を通り、右心室との境界周辺にある房室結節に伝わります。さらに、そこからヒス束→プルキンエ線維(拍動の刺激を伝達する最終部分)に伝わり、最終的に信号に反応した心筋が収縮して拍動が生じます。 この電気信号は、房室結節でとてもゆっくりと伝えられるため、心房と心室では収縮に時間差ができます。 この時間差があることで、心房が収縮し、血液を心室に充満させ、次いで心室が収縮して血液を排出するという流れがスムーズに行われるのです。 血液の循環にあたって、避けなければならないのが血液の逆流です。そこで、血液が一方向だけに流れるように働いているのが、心臓内にある4つの弁です。右心房と右心室の間にある「三尖弁」、左心房と左心室の間にある「僧帽弁」、そして肺動脈への出口にある「肺動脈弁」、大動脈への出口にある「大動脈弁」がそれです。 心臓が静脈から血液を取り込むときには三尖弁と僧帽弁が開き、肺動脈弁と大動脈弁が閉じます。逆に、血液を送り出すときは三尖弁と僧帽弁が閉じ、肺動脈弁と大動脈弁が開くというように、交互に開閉を繰り返して血液の逆流を防いでいます。 安静時と運動時では、心拍数や心拍出量を調節する必要があります。 調節機能としては、心筋が引き伸ばされる力に比例して、心筋細胞自体が収縮力を増すこと。また、自律神経(交感神経、副交感神経)から発せられるシグナルによって、心筋がその時々に必要な心拍をおこし、血液を全身に送り出すことなどがあげられます。 からだの各部位に必要なだけの血液を送る調節は、安静時では毎分の心拍数が70回、心拍出量は5.5L程度ですが、激しい運動を行った直後には、毎分の心拍数は200回以上、血液の拍出量は25Lにも達します。
肥満度検査の目的
内臓脂肪蓄積・肥満の有無をチェック むかしは、体重測定だけで肥満の有無を判定していましたが、肥満と肥満がもたらす病気の関係が明らかになるにつれ、検査方法も変化してきました。 現在、肥満の判定に用いられているのは、「BMI」と「腹囲」です。BMIと腹囲を総合して、健康上問題となる肥満を判定します。 BMI(BodyMassIndex=ボディ・マス・インデックス)とは、国際的にも広く用いられている体格指数で、体重と身長からBMI値を割り出します。 肥満の定義上、本来は体脂肪量から判定すべきなのですが、BMIは体脂肪を反映することから、肥満を判定する一つの目安として用いられています。 腹囲は、とくに内臓脂肪の蓄積を知るのに有意な検査で、メタボリックシンドロームの診断基準項目の一つにもなっています。 正確には、腹部CT検査などで、内臓脂肪面積が100c㎡以上ある場合に、内臓脂肪型肥満と診断されるのですが、腹囲は内臓脂肪の蓄積(内臓脂肪面積)を反映することから、こちらも肥満判定に用いられています。 BMIや腹囲が基準値を外れる要因、つまりは肥満の要因には、遺伝的素因や性差も関与していますが、何よりも大きいのは生活習慣です。 食べ過ぎによる摂取エネルギーの過剰、運動不足による消費エネルギーの不足が、エネルギー収支のバランスを崩し、体脂肪や体重の増加をまねきます。 また、肥満をまねく生活習慣の下地にはストレス、睡眠不足、自律神経やホルモンバランスの乱れなども関係しています。これらが過食を招いたり、太りやすい体質をつくる場合も少なくありません。 中年以降に太りやすくなる原因としては、基礎代謝の低下があげられます。 基礎代謝とは、呼吸や睡眠、消化など、生命を維持するための活動に必要な最低限のエネルギーのことです。 年をとると活動量が減り、筋肉が落ち、また若い頃のように成長に必要なエネルギーもいらなくなります。 こうして基礎代謝は老化に伴い低下していくのですが、さらに運動不足などが加わると、基礎代謝の低下にも拍車がかかります。 基礎代謝は成人で平均1200kcalとされており、これより低下すればするほど、エネルギー収支のバランスが崩れて太りやすくなります。 肥満、とくに内臓脂肪の蓄積は、さまざまな生活習慣病を合併することで知られています。具体的には脂質異常症をはじめ、糖尿病、高血圧、高尿酸血症、脂肪肝、動脈硬化など。さらには脳卒中や心筋梗塞などの引き金となるといわれています。 また、近年はメタボリックシンドロームの概念からも、内臓脂肪型肥満が問題視されています。 脂肪細胞からは、アディポサイトカインと呼ばれる生理活性物質が分泌されています。 アディポサイトカインには、血糖値の上昇、脂質異常の促進、血圧の上昇にかかわる悪玉アディポサイトカインと、動脈硬化の抑制や糖代謝の改善に働く善玉アディポサイトカイン(アディポネクチンという)があり、健康な体内では善玉と悪玉のバランスが保たれています。 しかし、内臓脂肪が蓄積した状態では、善玉であるアディポネクチンの分泌が低下し、悪玉アディポサイトカインの分泌が過剰になるのです。 このアンバランスが生活習慣病の連鎖を引き起こし、動脈硬化を促進させると考えられています。 そのほかにも、内臓脂肪、皮下脂肪にかかわらず、肥満を放置していると、ひざや腰などに過剰な負荷がかかり続けるため、膝関節症などの運動器疾患をもたらします。 また、睡眠時無呼吸症候群や、女性では月経異常など婦人科系疾患との関連も指摘されています。
目の病気の仕組み(糖尿病網膜症/網膜静脈閉塞症/網膜剥離)
目の病気のなかでも、網膜に何らかの異常を引き起こす病気は、視覚に大きなダメージを与えます。眼底(主に網膜)に出血がおきる「糖尿病網膜症」や「網膜静脈閉塞症」、網膜がはがれてしまう「網膜剥離」がその代表です。 糖尿病の合併症の一つで、高血糖が続き、網膜の細かな血管(細小動脈・静脈)が障害された状態です。病状の進行度により、「非増殖網膜症」「前増殖網膜症」「増殖網膜症」と呼ばれます。 ・第1段階 非増殖網膜症 障害された血管にコブのようなもの(毛細血管瘤)ができます。このコブから血液中の成分がもれると網膜がむくみます。また、網膜に白いシミのようなもの(白斑)ができたり、傷んだ血管から出血することもあります。 ・第2段階 前増殖網膜症 細小動脈血管に血栓ができると血流が途絶え、神経線維が壊死して、白い斑点(軟性白斑)が出現します。また、血管の太さが不規則になり、不完全でもろい血管(新生血管)が新たにでき始めます。 ・第3段階 増殖網膜症 酸欠状態を切り抜けようと新生血管が硝子体内へ出現します。新生血管はもろいため、出血をおこします。また、新生血管の周囲に膜状の組織(増殖膜)がつくられ、網膜や硝子体を足場に成長。成長過程で増殖膜が収縮し、網膜を引っ張った場合、網膜剥離がおきます。 網膜の静脈が詰まってしまう病気です。平行して走行する動脈が硬化したために静脈が圧迫され、詰まるケースがほとんどです。多くの場合、視神経乳頭のあたりから枝分かれして網膜全体に広がっている網膜動脈・静脈の交差している部分で詰まります。詰まったのちに静脈から出血して網膜に血液があふれてくると、その部分の網膜は光を感知できず、視野が欠損します。 何らかのきっかけで網膜に穴があき、そこから液化した硝子体が流入して、網膜がはがれてしまう病気です。 網膜の穴には、何かのはずみで硝子体に網膜が引っ張られて破れた「裂孔」と、網膜に自然に生じた「円孔」の2種類があります。 図は後部硝子体剥離によって生じた裂孔から網膜剥離へと至る過程を表したものです。 裂孔原性網膜剥離の経過 ①加齢とともに、ゼリー状の硝子体内部が液化して流れ出したり、収縮をおこすと、硝子体が網膜からはがれて前方へ移動する(後部硝子体剥離) ②硝子体が前方へ移動するため、網膜が引っ張られて穴(裂孔)があく ③液化した硝子体が裂孔に流れ込み、神経網膜が色素上皮層からはがれて浮き上がる 「牽引性網膜剥離」と「浸出性網膜剥離」の2つのタイプがあります。 ・牽引性網膜剥離 網膜の血管(新生血管)が硝子体中にのび、硝子体と網膜が癒着し、硝子体は液化する。新生血管の周囲にできた増殖膜が収縮して網膜を引っ張り、剥離させる。糖尿病網膜症に多い ・浸出性網膜剥離 脈絡膜に腫瘍や炎症が生じ、その部分からしみ出た水分(浸出液)が神経網膜と色素上皮層・脈絡膜の間にたまり、網膜を剥離させる