咽頭・喉頭の3つのはたらき
鼻腔、口腔から食道の上端までを咽頭と呼びます。 咽頭は、食物を食道に送る通路と、空気を気管に送る通路が交差する場所です。 咽頭の中ほどにある軟口蓋と、喉頭の上部にある喉頭蓋を使って、鼻腔から運ばれた酸素を気管へ、口腔から運ばれた食物を食道へと、それぞれ振り分けています。 口や鼻から酸素を取り入れる際に侵入する病原菌に対し、その防御機構として、のどにはリンパ球の集合組織である扁桃があります。 扁桃には、咽頭扁桃、耳管扁桃、口蓋扁桃、舌根扁桃の4種類があります。俗に"扁桃腺"と呼ばれるのは口蓋扁桃のこと。口を開けたときに喉の奥、両側に見える部分です。 喉頭は、咽頭の下、気管への入り口付近にあり、甲状軟骨、輪状軟骨などの軟骨に囲まれています。 成人男性では、甲状軟骨の一部が突起して首の全面に飛び出しており、"のどぼとけ"と呼ばれています。 哺乳類は喉頭をもちますが、その形状は咽頭のなかに高く飛び出す形で鼻腔の後ろにはまりこんでおり、空気を通すだけのはたらきです。 人間の喉頭は低く、咽頭のなかにわずかに飛び出している形状になっています。そのため、通常、人間の喉頭は咽頭のなかで開いており、食物が通るときだけ喉頭蓋によってふさがれるというしくみになっています。空気と食物の通り道で、その交通整理をするのが喉頭というわけです。 声帯は、喉頭の中央にあるひだ状(声帯ひだ)の器官で、弾力性の高い筋肉からできています。 前方は甲状軟骨、後方は披裂軟骨につながっています。左右の声帯ひだの隙間が声門です。 喉頭筋が声帯を開閉させて、声門が伸縮します。呼吸時には大きく開き、声を出すときにはゆるやかに開閉します。肺から吐き出された空気がゆるやかに開閉される声門を通るとき、声帯に振動を与え、声となって発せられます。 声は、出すときに声帯が振動する数やその大きさにより、高低、大小の違いがあります。 声帯の長さは男性およそ20mmに対し、女性はおよそ16mm。その厚みも若干男性のほうが厚く、女性が薄くなっています。女性のほうが声帯は振動しやすく、高い声になります。思春期以降の男性はのどぼとけができることから、より声帯が長く、厚くなり、振動しにくくなるため、声が低くなります。 声門が閉じて、声帯の振幅が大きいと声は大きく、声門を少し開いて、振幅が小さいと声は小さくなります。 カラオケで熱唱したり、大声で怒鳴ったり……。そんな声の酷使が粘膜の充血をまねきます。 粘膜が充血した状態のまま、さらに大声を張り上げるなどして、声帯に激しい刺激が加わると、粘膜下の血管が傷害されて血腫ができます。 安静にしていれば、血腫が吸収される可能性もありますが、そのまま声帯を酷使し続けるとポリープ(良性腫瘍)になります。 声帯ポリープの症状は、主に声がれですが、同時にのどや発声時の違和感などの症状が出る場合もあります。 治療法としては、一般的には、喉頭顕微鏡下手術(ラリンゴマイクロサージェリー)が用いられますが、手術を希望しない場合や、全身麻酔が不可能な場合は、外来でファイバースコープを用いた摘出術を行います。 手術後は、声帯の傷の安静のため、1週間前後の沈黙期間が必要になります。 予防法としては、声をなるべく使わないようにし、声やのどに違和感があるときは、のどの安静を心がけます。また、お酒やたばこも控えるようにします。 のどを安静にしてから2週間たっても改善されないようなら、耳鼻咽喉科を受診し、喉頭がんなどほかの病気がないか、検査が必要です。
筋肉のはたらき
細い筋原線維が集まって、一つの集合体となったものを筋線維(筋細胞)といいます。さらに、その筋線維の束の集まりが筋肉です。 筋原線維のなかには、たんぱく質の細い線維と、太い線維が対に並んでいます。骨格筋は脳からの指令を受けた運動神経のはたらきにより、互いに引き合ったり、離れたりします。この収縮と弛緩の繰り返しにより、からだや臓器を動かしているのです。 骨格筋は中枢神経、心筋・平滑筋は自律神経からの指令で動いています。 骨格筋は自分の意思で動かせる随意筋です。 骨格筋の重量は、成人男性では体重の約3分の1を占めています。その主成分はたんぱく質で、ミオシンという太い線維と、アクチンという細い線維の2種類から成り立っています。 骨格筋には、収縮する速さにより「遅筋」と「速筋」があります。 遅筋は、酸素を運ぶ赤いたんぱく質を多く含み、からだの深層部で持続的な運動をします。 一方、速筋は、赤い色のたんぱく質が少なく、からだの表面に近い部分で、瞬発的な運動を担います。 また、2つの筋では、収縮をおこす分子(ミオシン)の種類が異なることがわかっています。 心筋は、心臓を形づくり動かす筋肉です。筋線維が結びついた構造をしています。 自らの意思で動かすことはできない不随意筋であり、自律神経やホルモンによってコントロールされています。 心臓は血液の入口となる「心房」と出口の「心室」から成り立っています。心室には右心室と左心室があります。そのうち左心室の心筋は、全身に血液を送り出す役割があるため、肺に送り出す右心室の3倍の厚さがあるなど、とくに強い力に耐えられる構造になっています。 心筋が休むことなく心臓を動かすことで、私たちの生命は維持されています。こうした理由から、心筋は、全身のなかでもっとも丈夫な筋肉といえます。 平滑筋は、心臓以外の内臓や血管の外壁となり、それらを動かすための筋肉です。短く細い紡錘形の筋線維から形成されています。 内臓の多くは内腔側から「輪走筋」、「縦走筋」の2層の平滑筋がついて、その外側を「漿膜」が覆う構造になっています。 「心筋」と同じく、私たちが自らの意思で動かすことのできない不随意筋であり、自律神経やホルモンによってコントロールされています。
さまざまなホルモンのはたらき
甲状腺ホルモン 全身の細胞の活性化を促進する作用があります。主なはたらきは、以下の8つです。 ①基礎代謝と熱産生を上げて体温を上昇させる。 ②心拍数を上げて血圧を上昇させる。 ③交感神経のはたらきを高め、アドレナリン分泌を増加させる。 ④精神機能を高め、興奮した状態をつくり出す。 ⑤食後血糖を上昇させる。 ⑥血液中のコレステロール濃度を下げる。 ⑦成長ホルモンの合成を高めるとともに、作用を増強する。 ⑧成長期の中枢神経細胞の分化・成熟を促すなど。 カルシトニン 血液中のカルシウム濃度が増加することで分泌が促されます。血液中のカルシウムを骨に移動させて、骨の形成を促進します。 副甲状腺ホルモンは、骨のカルシウムを血液中に放出させるとともに、腎臓から尿へのカルシウムの排泄を抑制して、血液中のカルシウム濃度を高めます。また、腎臓でのビタミンDの活性化を促進することで、間接的に消化管からのカルシウム吸収を促します。 腎臓でつくられるエリスロポエチンは、アミノ酸165個からなるホルモンで、骨髄に作用し、赤血球の増殖・成熟を刺激します。 心臓からは、心房性ナトリウム利尿ホルモンが分泌され、高血圧などの心臓負担を和らげています。 胃から分泌されるグレリンは摂食亢進、成長ホルモン分泌促進、インスリン分泌抑制作用をもっています。 ガストリンは胃酸の分泌を促進します。 コレシストキニンは胆のうの収縮促進や腸管の運動を刺激します。 セクレチンはすい臓から水分と重炭酸の分泌の促進、胆汁分泌の促進、胃酸分泌と消化管運動の抑制をします。 副腎皮質ホルモン アルドステロン(ミネラルコルチコイド)は、腎臓から尿に排泄されるナトリウムを制限して、血中のナトリウム濃度を高めて血圧を上昇させ、水分の体内貯留を促進します。 コルチゾール(糖質コルチコイド)は、血液中のブドウ糖の供給を増加させる糖代謝作用です。またストレスを受けたり、感染がおこったときなどに大量に分泌されます。 デヒドロエピアンドロステロン(DHEA・副腎性性ホルモン)は、副腎皮質でつくられる男性ホルモンです。女性では、これがさらに女性ホルモンに変わります。性ホルモンは主に精巣や卵巣からつくられますが、副腎でもつくられています。 副腎髄質ホルモン アドレナリンとノルアドレナリンは、カテコールアミンと呼ばれるホルモンです。ともに突然の危機や非常時に直面したときなどに、交感神経の緊張により分泌が刺激されて、事態に対処するよう生体機能をコントロールするはたらきがあります。 すい臓にはランゲルハンス島と呼ばれる細胞の集合体が無数に散らばっており、インスリンやグルカゴンといったホルモンを分泌する内分泌腺として働いています。 グルカゴンは、肝臓内のグリコーゲンを分解、ブドウ糖の生産を促します。 インスリンは血液中の血糖値が過度に上昇するのを抑え、逆にグルカゴンは血糖値が下がり過ぎないように働きます。 男性は、黄体形成ホルモンが下垂体から分泌され、テストステロンを精巣の間質細胞が分泌します。このテストステロンの作用により、思春期に性器の成熟、声変わり、ひげが生えるなどの変化がおこります。卵胞刺激ホルモンから精子がつくられます。 女性は、卵胞や黄体が卵巣で発達し、生殖に必要なエストロゲン(卵胞ホルモン)、プロゲステロン(黄体ホルモン)が分泌されます。
腎臓のはたらき
腎臓の役割は血液から老廃物や余分な水分、塩分などを取り出すことです。 腎臓は横隔膜の下、背骨をはさんで左右に1つずつあります。重さは約150g、握りこぶしよりやや大きく、縦の長さが約10㎝、幅約5~6㎝で、そら豆のような形をしています。 腎臓には、尿をつくるため、心臓から多量の血液が絶えず送り込まれています。そのため、色は暗赤色をしています。 腎臓を縦割にしてみると、実質(腎実質)と空洞(腎洞)からなっていることがわかります。実質の外側の領域を「皮質」、内側の領域を「髄質」といいます。 皮質には心臓から送られて来た血液をろ過する「腎小体」があります。腎小体でこされた成分のうち、有用なものは髄質で再吸収されます。 髄質は十数個の円錐状のかたまりが集まったもので、一つ一つのかたまりは、その形状から「腎錐体」と呼ばれています。 再吸収された尿は、腎錐体の先端にある「腎乳頭」から流れ出し、この尿を受け取るのが、「腎杯」という小さなコップ状の袋です。 腎杯は、根元のところで互いにつながりながら、やがて「腎盂」という一つの広い空間になります。 尿は腎盂から尿管を通って、膀胱へと運ばれます。 皮質には、左右の腎臓に約100万個ずつといわれるほど膨大な数の腎小体があります。 1個の腎小体は、「糸球体」と「ボーマンのう」からなっています。糸球体は毛細血管が球状に集まったもので、糸球体を囲んでいるのが、ボーマンのうという袋状の器官です。 糸球体でろ過された尿はボーマンのうに排泄され、ボーマンのうに続く尿細管に流れ込みます。尿細管は皮質と髄質のなかをあちこち走りながら、最後は「集合管」に合流します。 心臓から排出された血液は、大動脈を経て、左右の腎動脈から腎臓へ流れ込みます。心臓が送り出す全血液の約4分の1が、常に腎臓へ送られています。 腎動脈は腎臓のなかでいくつか枝分かれしながら、最後は「糸球体」の毛細血管に収斂されます。
人体最大の臓器―肝臓
肝臓は、重さ約1.5㎏にもなる人体最大の臓器です。上部は横隔膜に、下部は胆のう、胃、十二指腸に接しており、多量の血液を含んでいるため、牛や豚のレバー同様、赤褐色をしています。 肝臓は一見、1つのかたまりのように見えますが、正確には左右2つに分かれており、これを右葉、左葉といいます。 また、多くの臓器では、動脈と静脈の2本の血管が出入りしていますが、肝臓にはもう1本、「門脈」という血管が通っています。 門脈とは胃や腸、すい臓、脾臓、胆のうなどから出た静脈が集まった血管です。肝臓の場合、必要な血液の約80%が門脈から肝臓に入ってきます。 肝臓は、「肝小葉」という直径1mmほどの小さな肝臓組織の集合体です。 肝小葉の周辺の結合組織には、俗に"三つ組"と呼ばれる肝動脈や門脈、胆管の枝が通っており、血液を取り込んだり、胆汁を運び出したりしています。また、肝小葉の中心には肝静脈につながる中心静脈が通っています。 肝小葉をつくっているのは、肝細胞と呼ばれる細胞で、その数は2500億~3000億個もあり、肝機能の中心的な役割を担っています。 肝臓は手術で70%くらいを切除しても、約4カ月で元の大きさに戻り、機能も回復します。これを「肝再生」といいます。 肝細胞の再生能力には、染色体の数が関係しているといわれています。通常の細胞は染色体が46本であるのに対し、肝細胞には染色体を通常の2倍、3倍、4倍ももつものが多く存在します。このことが、驚異的な肝再生を可能にしていると考えられています。
全身の筋肉のしくみ
筋肉は、からだや臓器を動かす原動力となる運動器官です。 筋細胞(筋線維)という収縮性のある細胞の集合体である筋肉は、骨格に付着してからだを動かす骨格筋、血管や内臓の器官を動かす平滑筋、心臓を動かす心筋と大きく3種類に分けられます。 また、骨格筋だけでも600種以上あり、それぞれに名前がつけられています。付着する骨の部位によって大きさや形もさまざまです。
ネフロンのしくみ
腎臓の主なはたらきは、血液をろ過して尿をつくることですが、その中枢ともいえるシステムが「ネフロン」です。 ネフロンとは、糸球体とボーマンのうからなる腎小体と、腎小体から続く尿細管までを一つの単位として表わす言葉です。 腎臓はネフロンの集合体であり、左右の腎臓にはそれぞれ約100万個、合計約200万個ものネフロンが存在するといわれています。 ただし、常に働いているのは、ネフロン全体の6~10%ほどです。ネフロンは交代で働くようになっており、かなりの余裕をもって機能しているといえます。 そのため、腎炎などの病気でネフロンの機能の一部が失われても、残りのネフロンによって機能はカバーされます。 ネフロンの糸球体は、毛細血管が糸玉のように丸く集まってできています。大きさは0.2mmほどで、かろうじて肉眼で見ることができます。 腎臓に流れ込んだ血液は、糸球体の毛細血管を通過する間にろ過されます。毛細血管の壁は3層構造になっており、内側から「毛細血管内皮細胞」「糸球体基底膜」「足細胞」といいます。 毛細血管内皮細胞には、直径50~100mmほどの孔がたくさん開いているため、透過性が高くなっています。糸球体基底膜は、細かな線維が絡み合っており、また、足細胞には約5~10mmの小さな孔があるため、赤血球・白血球・血小板やたんぱく質などの大きな分子は通過できません。 糸球体は、血液を段階的にろ過するシステムになっています。 糸球体でろ過された原尿は、皮質と髄質のなかを複雑に走る尿細管で再吸収されます。 尿細管は、糸球体を出て皮質から髄質に向かう「近位尿細管」「下行脚」、Uターンして皮質に向かう「上行脚」「遠位尿細管」と続きますが、ここまではほかの尿細管との分岐や合流が一切ない1本道です。 遠位尿細管の最後は集合管に合流します。 集合管では、ホルモンなどの作用を受けて、最終的な尿の成分調整が行われます。たとえば、脳下垂体から分泌されるバソプレシンというホルモンは、集合管の細胞膜に働きかけて、水を通しやすくします。結果、水が再吸収され、尿が濃縮されて濃い尿がつくられます。 こうして原尿の約1%が尿として腎杯に注がれ、腎盂を通って尿管へと運ばれます。
骨の構造
骨は、とても小さな骨細胞(骨芽細胞)の集合体が石灰質化したものです。よくみると複雑な構造をしていて、血管も無数に通っています。 骨の構造は、表面を覆う白色の結合組織である骨膜、その内側の硬い骨質からなる緻密骨、内部に骨髄を含む柔軟な骨質の海綿骨という3層からなります。 骨膜には、神経・血管・リンパ管が通っていて、刺激伝達や栄養の運搬という仕事を担い、骨の成長をつかさどります。 そして、骨膜と緻密骨は、シャーピー線維(結合線維)でしっかりと結合されています。 主成分のカルシウムやリンが厚く沈着した骨質をもつのが、緻密骨です。 緻密骨の中央には、ハバース管という血管を通す管があり、骨細胞に栄養を運ぶ役目を担っています。ハバース管を緻密質の骨が幾重にも包み込んで緻密骨の1単位となり、それが集合体となっています。 そして、緻密骨の集合体の内側には、マングローブの根っこのように密集した柔らかな海綿質でできた海綿骨があり、脊髄を覆っています。 中心にある骨髄腔は、骨はなく空洞になっています。 骨髄腔のなかは、血液をつくる成分の骨髄で満たされています。