感覚神経と運動神経
末梢神経は、感覚神経と運動神経の2つに分けられます。 感覚神経には、脊髄神経後根のほか、「内耳神経」、「視神経」、「嗅神経」などがあります。 聞く、見る、触れる、嗅ぐなどの体外から受けた刺激に興奮して、脳の中枢にそれらの情報を伝える神経です。 感覚神経は伝達経路が末端から中央・中心に向かっているので「求心性神経」とも呼ばれます。 多くの脊髄神経では、皮膚の触覚・味覚を伝える感覚神経は、運動神経と混ざった形でからだ中に張り巡らされています。 運動神経は、大脳皮質から発せられた指令を、からだの各部位に伝えるための神経です。 伝達経路が中枢から末端、遠方に向かっているので「遠心性神経」とも呼ばれます。 また、向かった先が骨格筋の場合は「体性運動神経」、分泌腺や内臓の平滑筋の場合は「自律神経」となります。
血液(血球)のプロフィール
血液は赤血球、白血球、リンパ球、血小板を含めた有形成分(細胞)が40~45%、液体成分の血漿が55~60%で構成されています。有形成分は、ほとんどが赤血球であり、白血球やリンパ球、血小板は1%程度しか含まれていません。 血液は心臓から血管を流れて、からだのすみずみまで酸素と栄養を運び、二酸化炭素や老廃物を回収して、再び心臓へ戻ってきます。 また、血液は体内に侵入してきたウイルスや細菌を白血球で撃退したり(免疫構造)、血管壁が破損したときに凝固して破損個所を修復したりします。さらには、各器官のはたらきを調整するための"情報伝達"の役目も担っています。 血液成分の約半分を占める赤血球は、直径6~9μm(1μm=1000分の1mm)。中央がへこんだ円盤状の細胞です。 その名のとおり赤色で、核をもたず柔軟性に富み、簡単に変形可能なため、毛細血管の薄い壁を通過できます。 からだ全体の血液中には、20~25兆個もの赤血球が存在し、酸素を運び、二酸化炭素を回収する工程を繰り返しています。主成分はヘモグロビンという鉄を含む色素です。 赤血球は約4カ月で寿命を迎え、時期がくると肝臓や脾臓で破壊されますが、ヘモグロビンは胆汁の成分、ビリルビンとして再利用されます。 白血球は無色で細胞内に核をもっています。 白血球には「顆粒球」「リンパ球」「単球」の3つの種類があります。1m3に6000個程度存在し、血流にのり全身を巡ります。 顆粒球は、好塩基球、好中球、好酸球に分かれ、それぞれが殺菌物質を放出します。 リンパ球にはヘルパーT細胞、キラーT細胞、B細胞、ナチュラルキラー細胞があり、B細胞は体内に侵入した病原体を攻撃する抗体をつくります。 単球は不要になった細胞を取り込み、マクロファージとなって破壊するなど、外敵の侵入を感知し、攻撃します。 血小板は核のない細胞で、骨髄のなかにある細胞、巨核球の一部がちぎれた断片からできています。通常は円形をしていますが、活動するときには突起を出して形を変化させます。 血小板は損傷部分から血液の流出(出血)があると損傷部位に集まり、一時的に傷口をふさぎます。 その後、血液中のたんぱく質である"フィブリノーゲン"が糸状のフィブリンに変化し、そこに赤血球や白血球がからみついて、血液のかたまりをつくります。さらに血漿のなかにある凝固因子に働きかけて止血します。 血漿は、淡黄色をした血液の液体成分です。約9割が水分であり、そのほかは血液の浸透圧(水分)を調整するアルブミン、外敵を攻撃するグロブリン、血液凝固を助けるフィブリノーゲンなどのたんぱく質、ブドウ糖、アミノ酸、脂肪、塩化ナトリウム、イオンなどで構成されています。 主に、水分、塩分、無機質などの栄養やホルモンを溶かし込み、必要な場所まで運んで栄養として与え、そこから老廃物を引き取るはたらきをします。
口腔の構造と役割
口腔(口)は、上唇、下唇、歯、歯肉、舌、口蓋、口蓋垂からなっています。 上唇と下唇に分かれる口唇は、表情筋によって動きます。 舌は、柔軟な横紋筋である内舌筋と外舌筋でできており、舌下神経によって動きがコントロールされます。 舌の周囲には、唾液を分泌する唾液腺(耳下腺、舌下腺、顎下腺)があります。 口腔内に食べ物が入ると同時に、唾液腺から唾液が分泌されます。奥歯で噛み砕かれた食べ物は唾液と混ぜ合わされ、舌などの働きによって、咽頭、食道へ送り込まれます。 舌の表面には"味蕾"という器官があり、味覚を感知しています。 食べ物の味は、舌にある「味蕾」という器官から大脳へ伝達されます。 味蕾では味孔(小さな孔)にある微絨毛という突起が食物の味を感知し、電気信号に変換して感覚神経から大脳の味覚野へ送ります。 大脳では、「甘い」「苦い」「塩辛い」「すっぱい」のみならず、「うまい」も判断しています。 歯には表面に露出している部分と、歯肉(歯茎)で隠れている部分があります。 見えている部分を歯冠、隠れている部分を歯根といいます。また、歯根を支えているのが歯槽骨と呼ばれる部分です。 歯冠の表面は、硬いエナメル質であり、歯冠全体をコーティングしています。一方、歯根の表面は、骨と同じセメント質で覆われています。 エナメル質やセメント質の内側は、やや柔らかい象牙質という組織でできています。 象牙質のなかには、象牙細管という細い管が走り、その奥に歯髄という神経や血管の入った組織があります。一般に〝神経〟と呼ばれるのは、この歯髄です。 歯には、食べ物を噛み切る"切歯"、食べ物を引き裂く"犬歯"、噛み切られた食べ物を細かく噛み砕く"小臼歯"と"大臼歯"という4種類の形があります。 これらの歯は、上顎、下顎それぞれ前歯を中心に、左右対称に並んでいます。 歯は、上下32本生えてくる人もいます。 そのうち、もっとも奥にある上下4本の第3臼歯は、通称「親知らず」と呼ばれる歯です。 親知らずは、約7割の人にしか生えてきませんので、通常は第3臼歯を除いた28本を永久歯として数えます。
小脳・脳幹のはたらき
脳全体の約1割の重量をもつ小脳は、小脳虫部を中央に、左右一対の小脳半球で構成されています。 小脳は新小脳、古小脳、原小脳の3つに分けられ、新小脳は大脳から送られる運動指令を自動化して脳にフィードバックするはたらきを、古小脳と原小脳は、平衡感覚や筋からの情報を利用した姿勢の維持や、細かい運動調整に関与しています。 細かい溝が多数走っている小脳表面は、神経細胞が集まっている小脳皮質で覆われています。全身から届いた情報を整理、統合し、赤核や視床を経由して大脳皮質や全身に伝達しています。 また、手足、眼球などの運動動作は、大脳皮質に情報を送らず、小脳自らが脳幹や脊髄経由で直接筋肉に指令を送り、調整しています。 脳幹は、大脳の下方にある間脳に続く中脳、橋、延髄で構成されています。小脳は橋の背面にのるように位置することから、脳幹は大脳と脊髄を結ぶ通路の役割も果たしています。 間脳は、視床と視床下部に分けられます。視床は脊髄を通って送られてきた嗅覚以外の感覚情報を大脳に伝える中継点の役割があります。視床下部は、自律神経系と内分泌系の神経伝達の中枢です。 脳幹では、中脳が視覚・聴覚の反射、橋では呼吸リズム、嚥下などの反射運動の神経伝達を担当しています。さらに、延髄は代謝・血液循環の調節に関与しています。 生命の維持に重要な自律神経の中枢と関係するほか、呼吸、心拍、体温調節など、間脳・脳幹は生命維持に深くかかわる重要なはたらきを遂行する器官です。
情報伝達のかなめ―神経細胞
体内の情報伝達を行う神経は、特殊な細胞の集まりによって組織されています。 この細胞はニューロン(神経細胞)と呼ばれ、核のある"神経細胞体"、神経細胞体からのびた"神経突起"で構成されます。 神経突起には、軸索(長いもの)と、樹状突起(短いもの)があり、軸索は細胞膜がキャッチした興奮(電気信号)を長い突起部にそって、先端方向へ伝えます。 一方、短いほうの樹状突起は、木の枝のように複数張り巡らされています。その先端部が他の神経細胞軸索や感覚器と接触し、接触した神経細胞から信号を受け取っています。この接触部は"シナプス"と呼ばれます。 大脳にあるニューロンは、約140億個と推定されています。無数のニューロンはシナプスを介してつながっているのです。 軸索の多くは、伝導速度を上げるために、随鞘で断続的に絶縁されています。 情報の伝達は神経細胞内では、電気信号として伝えられます。 細胞は細胞膜に覆われ、内側の液はカリウムイオンを多く含み、マイナスに荷電しています。細胞膜外側の液はナトリウムイオンを多く含み、プラスに荷電しています。 興奮が膜に伝わると、細胞内のナトリウムを通す部位が一瞬開かれます。プラス電流をもつナトリウムが細胞内に入ることにより電位変化をおこし、隣の膜に興奮を伝えます。 興奮が電気信号として軸索の先端のシナプスまで伝わるとシナプスの結合部のふくらみ(シナプス小頭)のなかにあるシナプス小胞が細胞膜に結合し中身の神経化学伝達物質をシナプス間隙に放出します。 化学伝達物質が次の細胞の樹状突起にある受容体へ結合することで新たにナトリウムチャンネルが開き、電気的な興奮が引き起こされ、さらに軸索先端へ伝達されていきます。
全身の神経網
判断や思考などの知的な活動や、呼吸など体内で営まれる生命活動、あるいは歩く、走るといった運動は、人体の情報処理システム「神経系」によってコントロールされています。 この情報処理システムは、脳・脊髄からなる中枢神経と、中枢神経とからだの各部を結ぶ情報連絡路である末梢神経によって支えられています。 末梢神経が集めた情報は、すべて電気信号化されて神経細胞間で伝達されます。そして、最終的に中枢神経に届けられると、その信号を中枢神経が処理し、脳からの伝達信号にして末梢神経に送るシステムになっています。 末梢神経には、脳からでている脳神経、脊髄からでている脊髄神経があります。また、伝達する情報の種類により、体性神経と自律神経の2種類に分類されます。 体性神経には、感覚神経、運動神経の2種類があります。感覚神経は、視覚、聴覚、触覚、味覚などの情報を信号にして中枢神経(脳)に伝達し、運動神経は、脳から出る指令(運動命令)を、運動をする部位の筋に伝達します。 自律神経には、交感神経、副交感神経の2種類の神経があります。からだや環境の状況に応じて、脳からの調整を受けながら呼吸、心拍、体温、血圧、発汗、消化吸収、尿の生成など生命を維持するための機能をコントロールしています。
多様な動きを生む関節
骨と骨をつないでいる関節は、関節包という袋で包まれています。 関節包の内側にある滑膜では、関節の動きをスムーズにするための潤滑油となる滑液を分泌しています。 また、関節包の外側には、靱帯があります。靱帯には"腱"となった筋肉の一端がついていて、筋肉の動きを骨に伝達する役割を果たしています。 関節頭の先端および関節窩は関節軟骨で覆われています。関節軟骨はクッション性があり、外部からの衝撃や、運動による骨同士の摩擦を吸収して、関節の骨同士が傷つかないようにガードしています。 関節軟骨は、表面が滑らかな硝子様軟骨からできています。硝子様軟骨の構造は網目状になったコラーゲン線維でできた骨組みに、プロテオグリカンという物質が絡み付くようになっています。 プロテオグリカンは、水分と融合しやすいため、子どもでは軟骨に水分を多く含みそれだけクッション性も高いのですが、加齢などで水分量が減少すると衝撃を和らげる力も減少してしまいます。 そのため、関節を動かしただけで骨の摩擦をおこし、痛みを感じる関節痛を引き起こすようになります。
拍動のメカニズム
心臓は、心筋が規則的に収縮と弛緩を繰り返すことによって、一定のリズムで拍動を続けています。 心臓が休むことも大きく乱れることもなく、規則正しく拍動を続けていられるのは、"刺激伝導系"というメカニズムのおかげです。 刺激伝導系の発端は、心臓の運動の司令塔である"洞房結節(右心房の上端にある)"から「動け」という電気刺激の信号が発せられることです。 その信号は右心房の壁を通り、右心室との境界周辺にある房室結節に伝わります。さらに、そこからヒス束→プルキンエ線維(拍動の刺激を伝達する最終部分)に伝わり、最終的に信号に反応した心筋が収縮して拍動が生じます。 この電気信号は、房室結節でとてもゆっくりと伝えられるため、心房と心室では収縮に時間差ができます。 この時間差があることで、心房が収縮し、血液を心室に充満させ、次いで心室が収縮して血液を排出するという流れがスムーズに行われるのです。 血液の循環にあたって、避けなければならないのが血液の逆流です。そこで、血液が一方向だけに流れるように働いているのが、心臓内にある4つの弁です。右心房と右心室の間にある「三尖弁」、左心房と左心室の間にある「僧帽弁」、そして肺動脈への出口にある「肺動脈弁」、大動脈への出口にある「大動脈弁」がそれです。 心臓が静脈から血液を取り込むときには三尖弁と僧帽弁が開き、肺動脈弁と大動脈弁が閉じます。逆に、血液を送り出すときは三尖弁と僧帽弁が閉じ、肺動脈弁と大動脈弁が開くというように、交互に開閉を繰り返して血液の逆流を防いでいます。 安静時と運動時では、心拍数や心拍出量を調節する必要があります。 調節機能としては、心筋が引き伸ばされる力に比例して、心筋細胞自体が収縮力を増すこと。また、自律神経(交感神経、副交感神経)から発せられるシグナルによって、心筋がその時々に必要な心拍をおこし、血液を全身に送り出すことなどがあげられます。 からだの各部位に必要なだけの血液を送る調節は、安静時では毎分の心拍数が70回、心拍出量は5.5L程度ですが、激しい運動を行った直後には、毎分の心拍数は200回以上、血液の拍出量は25Lにも達します。
“鼻”の2つのはたらき
鼻は、外側から見える「外鼻」と、孔の中の「鼻腔」とに大きく分けられます。 外鼻の中心を鼻背、目尻の間を鼻根、下方の先端を鼻尖、孔の周りを鼻翼といいます。鼻背の上3分の1ぐらいは骨で硬くなっていますが、それより下は軟骨でできています。 鼻孔から鼻腔に入った空気は、鼻道という空気の通り道を通ります。鼻道は、空気と一緒に吸い込まれた"ほこり"などが気管に入らないように鼻毛や粘膜に覆われており、これらのフィルター効果によって、ほこりを絡め取っています。 鼻腔は、鼻中隔によって左右に分けられて、さらに鼻甲介という横のひだで上、中、下3つに分かれています。鼻から吸い込んだ空気は鼻道・咽頭を通り、気管、肺へと進み、肺から出された空気は再び鼻道から体外へ出されます。 また、鼻中隔と鼻甲介は、毛細血管が通る粘膜に覆われています。鼻腔内では、毛細血管の熱を鼻孔から入った空気に伝えて温め、粘膜上皮から分泌される水分で空気に適度な湿気を与えています。このため、鼻道を通過した空気は、温度25~37℃、湿度35~80%の状態に調整されます。 上鼻道内の天井部の粘膜には、「嗅上皮」という切手1枚程度のスペースがあり、においを感知する嗅細胞が200万個も存在します。ここで"においの元"を感知します。 においの元は、空気とともに鼻から入ってくる化学物質です。 鼻腔内の粘液で融解された化学物質は、嗅上皮にある嗅細胞から出る"嗅小毛"という線毛にとらえられ、においの電気信号となります。 においの信号が、嗅球に伝達され、知覚します。さらに、大脳がこの信号を処理すると、においの識別が行われます。 鼻づまりなどをおこし、口で呼吸をしているときには、においがわからなくなります。これは、化学物質が嗅上皮に届かないことによって、においの信号が脳に届きにくいことからおこる現象です。
骨の構造
骨は、とても小さな骨細胞(骨芽細胞)の集合体が石灰質化したものです。よくみると複雑な構造をしていて、血管も無数に通っています。 骨の構造は、表面を覆う白色の結合組織である骨膜、その内側の硬い骨質からなる緻密骨、内部に骨髄を含む柔軟な骨質の海綿骨という3層からなります。 骨膜には、神経・血管・リンパ管が通っていて、刺激伝達や栄養の運搬という仕事を担い、骨の成長をつかさどります。 そして、骨膜と緻密骨は、シャーピー線維(結合線維)でしっかりと結合されています。 主成分のカルシウムやリンが厚く沈着した骨質をもつのが、緻密骨です。 緻密骨の中央には、ハバース管という血管を通す管があり、骨細胞に栄養を運ぶ役目を担っています。ハバース管を緻密質の骨が幾重にも包み込んで緻密骨の1単位となり、それが集合体となっています。 そして、緻密骨の集合体の内側には、マングローブの根っこのように密集した柔らかな海綿質でできた海綿骨があり、脊髄を覆っています。 中心にある骨髄腔は、骨はなく空洞になっています。 骨髄腔のなかは、血液をつくる成分の骨髄で満たされています。