血液(血球)のプロフィール
血液は赤血球、白血球、リンパ球、血小板を含めた有形成分(細胞)が40~45%、液体成分の血漿が55~60%で構成されています。有形成分は、ほとんどが赤血球であり、白血球やリンパ球、血小板は1%程度しか含まれていません。 血液は心臓から血管を流れて、からだのすみずみまで酸素と栄養を運び、二酸化炭素や老廃物を回収して、再び心臓へ戻ってきます。 また、血液は体内に侵入してきたウイルスや細菌を白血球で撃退したり(免疫構造)、血管壁が破損したときに凝固して破損個所を修復したりします。さらには、各器官のはたらきを調整するための"情報伝達"の役目も担っています。 血液成分の約半分を占める赤血球は、直径6~9μm(1μm=1000分の1mm)。中央がへこんだ円盤状の細胞です。 その名のとおり赤色で、核をもたず柔軟性に富み、簡単に変形可能なため、毛細血管の薄い壁を通過できます。 からだ全体の血液中には、20~25兆個もの赤血球が存在し、酸素を運び、二酸化炭素を回収する工程を繰り返しています。主成分はヘモグロビンという鉄を含む色素です。 赤血球は約4カ月で寿命を迎え、時期がくると肝臓や脾臓で破壊されますが、ヘモグロビンは胆汁の成分、ビリルビンとして再利用されます。 白血球は無色で細胞内に核をもっています。 白血球には「顆粒球」「リンパ球」「単球」の3つの種類があります。1m3に6000個程度存在し、血流にのり全身を巡ります。 顆粒球は、好塩基球、好中球、好酸球に分かれ、それぞれが殺菌物質を放出します。 リンパ球にはヘルパーT細胞、キラーT細胞、B細胞、ナチュラルキラー細胞があり、B細胞は体内に侵入した病原体を攻撃する抗体をつくります。 単球は不要になった細胞を取り込み、マクロファージとなって破壊するなど、外敵の侵入を感知し、攻撃します。 血小板は核のない細胞で、骨髄のなかにある細胞、巨核球の一部がちぎれた断片からできています。通常は円形をしていますが、活動するときには突起を出して形を変化させます。 血小板は損傷部分から血液の流出(出血)があると損傷部位に集まり、一時的に傷口をふさぎます。 その後、血液中のたんぱく質である"フィブリノーゲン"が糸状のフィブリンに変化し、そこに赤血球や白血球がからみついて、血液のかたまりをつくります。さらに血漿のなかにある凝固因子に働きかけて止血します。 血漿は、淡黄色をした血液の液体成分です。約9割が水分であり、そのほかは血液の浸透圧(水分)を調整するアルブミン、外敵を攻撃するグロブリン、血液凝固を助けるフィブリノーゲンなどのたんぱく質、ブドウ糖、アミノ酸、脂肪、塩化ナトリウム、イオンなどで構成されています。 主に、水分、塩分、無機質などの栄養やホルモンを溶かし込み、必要な場所まで運んで栄養として与え、そこから老廃物を引き取るはたらきをします。
血液循環と血管の構造
血液循環を構成する2つのルート―。その1つは、心臓の左心室から大動脈に拍出された血液が、中動脈→小動脈→細動脈→微細動脈→毛細血管の順に進んで全身を流れ、微細静脈→細静脈→小静脈→中静脈→上大静脈・下大静脈へと合流を繰り返しながら右心房に戻ってくる「体循環」です。 体循環で血液がからだを一周する時間は、約20秒といわれています。このわずかな時間で、血液は左心室を出発し、からだ中を巡りながら必要な部位でガス交換、すなわち酸素を届け、不要な二酸化炭素を引き取って右心房に戻ってきます。 もう一方のルートは、右心房→右心室→肺動脈を経由して肺に入り、肺静脈を通って左心房に戻ってくる「肺循環」です。このコースは、右心房を出てから3~4秒という短時間で血液が心臓に戻ってきます。 肺循環では、体循環のルートを通って心臓に戻ってきた血液から、二酸化炭素や老廃物などを取り除いて、再度、酸素を多く含んだ新鮮な血液に再生するため、肺のなかでガス交換を行ったのち、心臓へと戻します。 肺循環を終えた血液は左心房、左心室を経由して大動脈から再び体循環のルートへと進みます。 血液は、常に体循環、肺循環を交互に繰り返して体内を循環しているのです。 血管は血液が流れるパイプラインであり、パイプの内側にあたる"内腔"と、パイプの外壁となる"血管壁"からできています。 動脈と静脈では構造的な差異が若干あり、まず動脈は内腔が狭く、内側から、薄い「内膜」、厚い「中膜」、「外膜」の3層の膜が重なる厚い血管壁に囲まれ、弾力性に富んだ構造になっています。 また、太い動脈と細い動脈では、それぞれ役割が異なります。大動脈のように太い動脈は、弾力性に富んで心臓からの強い血流を受け止めて、血流を和らげる役割を担います。俗に"弾性血管"と呼ばれています。 細い動脈は"抵抗血管"とも呼ばれ、心臓からの圧力に抵抗して血液量を調整しています。心臓から送られてきた血液を、どこにどれだけ流すのかを分配します。 一方、静脈は体循環から心臓に戻る血液のラインで、体内の二酸化炭素や老廃物を吸収した血液が流れています。動脈同様に3層の膜で血管壁を形成していますが、内膜、中膜ともに薄く、平滑筋や弾性線維も少ないため、血管壁の弾力が強くありません。 静脈を流れる血液は体内の約75%。血管の数も動脈より多く、太いため、逆流を防ぐために弁がついています。さらに手足の筋肉の動きを"血液の流れをサポートするポンプ"として利用し、ゆるやかなスピードで心臓に血液を戻します。 これら動脈と静脈の間には、直径1mmにも満たない(約1/100mm)毛細血管が無数にあり、両者間を網の目状に走っています。 毛細血管の血管壁は、動脈や静脈に比べて薄く、内皮細胞、基底膜、周皮細胞などからできています。平滑筋はありません。
呼吸器の病気の仕組み(喘息/気管支炎/肺炎/肺気腫/肺がん)
気管支には平滑筋という筋肉が張り巡らされ、肺のすみずみにわたる空気の流れを調節しています。気管支の平滑筋が激しく収縮したり、粘液の分泌が高まるなどして気管支が狭くなると空気がスムーズに流れなくなり、呼吸困難をきたします。このような事態を招く代表的な病気が「気管支喘息」や「急性気管支炎」です。また、「肺炎」や「肺気腫」など、肺胞に異常がある場合も、スムーズな呼吸ができなくなります。 気管支喘息の患者さんの気道(気管や気管支)には、慢性の炎症があり、気道の粘膜が過敏になっています。また、むくんだり、粘液の分泌が増加するなどして気道が狭くなっているところへ、冷気やたばこの煙などの刺激が加わると、気管支の平滑筋が激しく収縮し、呼吸困難に陥ります。 気管支の内面を覆う粘膜には、線毛の生えた粘膜上皮細胞がきれいに並んでいます。粘液の分泌も活発ではなく、血管にもうっ血は生じていません。 ウイルスや細菌に感染して急性の炎症がおきると、気管支の粘膜にむくみが生じ、粘液の分泌も増加します。さらに進行すると粘膜上皮細胞がはがれ落ちて血管のうっ血が生じ、膿のような粘液が出てきます。 肺がんは、肺や気管支などにできる悪性の腫瘍です。肺がんは「小細胞」がんと「非小細胞がん」とに大別され、さらに非小細胞がんは"腺がん""扁平上皮がん""大細胞がん"に分けられます。 いずれも、肺や気管支などの正常な細胞が、がん細胞化して増殖・進行していきます。また、肺には無数の毛細血管が走っているため、肺にできたがんが血液にのって全身に運ばれ、他臓器に転移しやすいのが特徴です。発がんの主な原因は、喫煙、大気汚染、アスベストなどが考えられています。 肺がんのなかで、日本人にもっとも多いのが腺がんです。腺がんは肺の末梢部に発生するがんの一つで、とくに肺を包んでいる膜である胸膜に近い場所に発症しやすいのが特徴です。 また、がんに侵された肺胞はつぶれていきますが、その際につぶれた部分を覆っている胸膜が引っ張られます。そのため、腺がんに侵された肺の組織を肉眼で見てみると、胸膜が引きつれているように見えます。たばこの成分や粉塵がたまって肺胞に沈着した炭粉もがんの病巣中心部に集まっています。 腺がんの次に多い肺がんが扁平上皮がんです。扁平上皮がんは肺門部にある太い気管支に発症することが多いがんです。 肺がんのなかでは比較的症状が早くから現れるのが特徴で、がんが比較的小さなうちから血痰や咳などが現れます。進行や転移もほかの肺がんと比べて遅いといわれています。また、発症には喫煙が大きな要因となっています。 大細胞がんも腺がんと同じ肺の末梢部に多く発症します。肺がん全体の5%にすぎないがんですが、進行・転移のスピードは小細胞がんの次に速く、早期発見が予後を左右します。 扁平上皮がんと同じに肺門部に多くできるのが小細胞がんです。小細胞がんの特徴は肺がんのなかでも非常に増殖のスピードが速く、ほかの部位に転移もしやすいことです。発見段階ではすでに進行していることが多く、手術のみで治癒することが難しく、抗がん剤などの化学療法がメインの治療となります。 長年の多量喫煙や大気汚染などがきっかけで肺胞の壁が破壊されて大きな穴(気腔の拡大)が多発し、肺の弾力性が弱まっていきます。 肺は気道を通じて直接外界に接しているため、病原菌や塵芥など、さまざまな有害物質に侵されやすくなっています。こうした因子により生じる肺の炎症が肺炎です。 気管支肺炎は、空気の通りが悪い末梢の気管支の炎症として始まり、まわりの肺胞へ広がっていきます。肺気腫では呼吸細気管支や肺胞、肺胞のうなど「肺実質」と呼ばれる組織が破壊されます。
呼吸をつかさどる気管・気管支・肺
喉頭から肺へのびる気管は、直径約15mm、長さ約10㎝―。軟骨と筋肉でつくられている管状の器官です。 私たちは、呼吸が止まると生命を維持することができません。そのため空気の通り道となる気管は、管をガードするように気管軟骨というU字形の軟骨が積み重なり、気管が狭まらないよう確保されています。 気管から枝分かれした2本の気管支(主気管支)は、右肺と左肺に分かれ、さらに肺のなかで20回ほど分岐を繰り返して肺のなかに広がっています。 分岐した気管支は先端から末端へ向かって、細気管支、終末気管支、呼吸気管支、肺胞管となり、終点は肺胞がブドウの房のようにつながった形状になっています。 呼吸筋の作用による肺の拡張で、鼻や口から空気を吸い込むと、空気は咽頭で合流し、気管から左右の肺へ運ばれ、最終的に肺胞へ送られます。 途中、気管や気管支の内面の粘膜や線毛が、通過する空気中の異物、細菌などを捕らえます。このように気管や気管支は、空気清浄機のように空気中の異物をろ過しつづけ、清浄な空気を肺へ送るのです。途中で捕らえられた異物や細菌は、咳やくしゃみ、痰と共に口や鼻から排出されます。 肺は脊椎、肋骨、胸骨で囲まれた臓器です。 灰は呼吸を通じて、空気から酸素を体内に取り込むという、大切な役割を担っています。 しかし、肺は自らの力で空気の出し入れはできず、胸壁の拡大・縮小にしたがって空気の吸入・排出を行っています。 また、肺の表面を覆う胸膜という軟らかい膜が、胸壁と肺との間で起こる衝撃を緩和しています。 肺の構成は上葉、中葉、下葉、の3つに分かれた「右肺」、上葉、下葉に分かれた「左肺」の2つで1対になります。 左肺が右肺よりも少し小さいのは、心臓が近くにあるためです。 肺のなかは気管支と心臓からつながる肺動脈、肺静脈がすみずみまでのびていて、それぞれが肺胞に入り込んでいます。 気管支が分岐した呼吸細気管支の末端に、ブドウの房のように複数ある小さな袋が肺胞です。 一つ一つの肺胞の外側には、肺動脈、肺静脈からそれぞれ分岐した肺胞毛細血管が走っていて、この毛細血管内の血液中二酸化炭素と、肺胞内の酸素がガス交換を行っています。 一つひとつの肺胞は微小ですが、左右2つの肺に約6億もの肺胞が広がり、その表面積は60㎡にも及ぶといわれます。 肺には2種類の血管があります。1つは血液ガス交換をするための「機能血管」で、心臓の右心室から出ている肺動脈から肺胞までをつないでいます。ガス交換をしたのちに肺静脈となり、心臓の左心室へつながります。 もう1つは、肺そのものを養っている「栄養血管」です。栄養血管へは直接大動脈から血液が送られ、大静脈へ戻っていきます。 肺の役割は、血液に酸素を送り、血液から二酸化炭素を受け取るという、血液中の"ガス交換"です。 ガス交換を行うのは、気管支の末端とつながる"肺胞"です。 安静時、直径約0.2mmの袋状の肺胞は、壁も非常に薄く、表面を網の目のように走る肺胞毛細血管と肺胞との間で、酸素と二酸化炭素の交換を行います。 このガス交換時、赤血球に含まれるヘモグロビンのはたらきが重要となります。 ヘモグロビンは、血中の酸素が濃いところでは酸素と結合し、薄いところでは酸素を放出します。 また、二酸化炭素が濃いと二酸化炭素と結合し、薄いと放出するはたらきも併せもっています。 全身から肺に戻ってきた二酸化炭素を多く含んだヘモグロビンは、肺のなかで二酸化炭素を放出し、新しい酸素を取り入れて、再び全身へと出ていきます。 そして、酸素を必要とする細胞をみつけると、ヘモグロビンは間質液という組織間液のなかに酸素をうつし、細胞はそこから酸素を受け取ります。 逆に細胞からは間質液中に不要となった二酸化炭素が排出され、それが血液に取り込まれて肺に運ばれていきます。 肺胞内のガス交換を「外呼吸」、全身の細胞とのガス交換を「内呼吸」といいます。 全身から心臓に戻された二酸化炭素を含んだ血液は、肺内で新たな酸素を受け取り、再び勢いよく全身に送り出されていきます。
小腸のはたらき
小腸は十二指腸・空腸・回腸からなる臓器ですが、ここでは空腸と回腸を中心に解説します。 小腸は、消化における最終段階の作業を担うとともに、栄養素の吸収を行っています。 スムーズに栄養素を吸収するため、小腸はとても長く(6~7m)、その内壁を覆う粘膜には輪状のヒダがあるなど、表面積を大きくする構造になっています。 小腸は、十二指腸から先の前半約5分の2が空腸、後半約5分の3を回腸が占めています。 空腸と回腸は、解剖学的にはほとんど同じ構造をしており、生理学的に回腸のほうが腸液の分泌がやや多いという違いがありますが、両者のはたらきもほぼ同じです。 回腸と大腸の境には回盲弁という弁があり、これによって大腸の内容物が逆流しないようになっています。 小腸の直径は約4㎝あり、小腸の壁は外側の縦走筋と内側の輪状筋からなる2層構造になっています。これらの筋肉層のはたらきによって蠕動運動を行い、消化物を先へ先へと送り出します。 小腸の内壁は、表面を覆う粘膜が輪状のヒダになっていることに加え、粘膜が500万個もの絨毛に覆われています。この構造によって小腸全体の表面積は約200㎡と広くなり、効率よい栄養素の吸収を可能にしています。 絨毛の長さは約1mmで、表面は小腸上皮細胞(「栄養吸収細胞」ともいう)に覆われています。さらにその表面には微絨毛という細かい突起があり、この突起部分を刷子縁といいます。最終的な消化は、この刷子縁で行われています。 また、絨毛のなかには毛細血管網と1本のリンパ管が通っており、脂質はリンパ管に吸収されて静脈へ、脂質以外の栄養素は小腸上皮細胞に吸収され、毛細血管の血液に溶け込んで肝臓へと運ばれます。
腎臓のはたらき
腎臓の役割は血液から老廃物や余分な水分、塩分などを取り出すことです。 腎臓は横隔膜の下、背骨をはさんで左右に1つずつあります。重さは約150g、握りこぶしよりやや大きく、縦の長さが約10㎝、幅約5~6㎝で、そら豆のような形をしています。 腎臓には、尿をつくるため、心臓から多量の血液が絶えず送り込まれています。そのため、色は暗赤色をしています。 腎臓を縦割にしてみると、実質(腎実質)と空洞(腎洞)からなっていることがわかります。実質の外側の領域を「皮質」、内側の領域を「髄質」といいます。 皮質には心臓から送られて来た血液をろ過する「腎小体」があります。腎小体でこされた成分のうち、有用なものは髄質で再吸収されます。 髄質は十数個の円錐状のかたまりが集まったもので、一つ一つのかたまりは、その形状から「腎錐体」と呼ばれています。 再吸収された尿は、腎錐体の先端にある「腎乳頭」から流れ出し、この尿を受け取るのが、「腎杯」という小さなコップ状の袋です。 腎杯は、根元のところで互いにつながりながら、やがて「腎盂」という一つの広い空間になります。 尿は腎盂から尿管を通って、膀胱へと運ばれます。 皮質には、左右の腎臓に約100万個ずつといわれるほど膨大な数の腎小体があります。 1個の腎小体は、「糸球体」と「ボーマンのう」からなっています。糸球体は毛細血管が球状に集まったもので、糸球体を囲んでいるのが、ボーマンのうという袋状の器官です。 糸球体でろ過された尿はボーマンのうに排泄され、ボーマンのうに続く尿細管に流れ込みます。尿細管は皮質と髄質のなかをあちこち走りながら、最後は「集合管」に合流します。 心臓から排出された血液は、大動脈を経て、左右の腎動脈から腎臓へ流れ込みます。心臓が送り出す全血液の約4分の1が、常に腎臓へ送られています。 腎動脈は腎臓のなかでいくつか枝分かれしながら、最後は「糸球体」の毛細血管に収斂されます。
腎臓・泌尿器のしくみとはたらき
泌尿器とは、心臓から送り出された血液から余分な水や老廃物をこしとり、尿として排泄するまでのしくみにかかわる器官をいいます。 具体的には尿をつくる腎臓、腎臓でつくられた尿を運ぶ尿管、尿を一時ためておく膀胱、尿を体外へ排出する尿道からなり立っています。 男性と女性とでは、尿道のつくりが異なります。男性の尿道は長さが16~25㎝ほどあり、排尿と射精の2つの役割を担っています。一方、女性の尿道は長さが3~5㎝ほどと短く、その役割は排尿だけです。 男女ともに、膀胱の出口付近には"内括約筋"と"外括約筋"という筋肉があり、2つの括約筋が収縮することで尿のもれを防いでいます。 心臓から腎臓へ送られた血液は、「糸球体」の毛細血管に流れ込み、分子の大きい赤血球やたんぱく質などはここでろ過されます。分子の小さい水やブドウ糖、アミノ酸、カリウム、ナトリウム、尿酸、クレアチニンなどの老廃物は原尿(尿のもと)となり、糸球体から続く「尿細管」に送られます。糸球体では、1日約150~200Lもの原尿がつくられますが、実際に尿として排出されるのは原尿の約1%ほどです。
腎臓・泌尿器の病気の仕組み(腎がん・急性腎炎・尿路結石など)
腎臓は尿をつくるだけでなく、体液に含まれるナトリウムやカリウムなどの成分を調節したり、赤血球の産生を促すホルモンや血圧を調節するホルモンをつくるなど、多様なはたらきを担っています。そんな腎臓にダメージを与えるのが「腎炎(糸球体腎炎)」や腎臓のがんです。 また、「尿路結石」や「腎不全」、「前立腺肥大」がおこると、尿が出にくくなったり、出なくなったり、逆に頻尿になったりと、排尿に異変が生じます。 腎臓の中心部にある腎盂は尿を尿管へ送る通路です。この腎盂で発生するのが腎盂がんです。腎盂は移行上皮と呼ばれる粘膜で構成されており、がんはここで発生します。尿管も移行上皮で構成されているため、腎盂がんに尿管がんを合併することも少なくありません。 腎臓の尿細管の上皮細胞から発生するがんで、腎臓にできるがんの約9割を占めるといわれています。腎細胞がんは静脈へ侵入して広がる傾向があり、腎静脈から下大動脈へと腫瘍血栓をつくって、心臓の右心房へ達することもあります。 腎炎の一種である急性糸球体腎炎は、腎臓以外のところで感染がおき、その後、感染した病原体に対する免疫反応が糸球体を障害していくというものです。不要なものをこしとる毛細血管の"基底膜"という部分に、感染した病原体とこれに立ち向かう物質が結合した"免疫複合体"が沈着して炎症がおきます。すると、基底膜が分厚くなったり、毛細血管の内皮細胞が壊死するなどの異変が発生します。 急性腎不全は①血圧低下や全身の血流量低下、②重い急性腎炎や尿細管の閉塞など、③尿路以降の病変(腎臓から下の尿路結石など)が原因で数時間から数日の間に腎機能が著しく低下した状態です。1日の尿量が400ml以下になります。 慢性腎不全は糖尿病や慢性糸球体腎炎などの腎臓病が原因で、糸球体の能力が50%以下になった状態です。クレアチニンクリアランスという検査の数値が30~50ml/分になったころから、夜間の多尿などの症状が現れます。 ①ネフロンの壊死が始まり、その機能が中程度に障害された状態 ②ネフロンの壊死が進んだ状態。腎機能はかなり低下する 尿路結石 尿路結石は、尿の通り道である尿路に結石ができる病気の総称。結石がある場所により、 腎杯結石、腎盂結石、尿管結石、膀胱結石、尿道結石に分類されます。 進行過程 第1期 さほど肥大は進んでいないが、膀胱・尿道が刺激されるため下腹部に不快感がある。また、頻尿(とくに夜間の頻尿)がみられたり、排尿してもまだ尿が残っているような感じがする。 第2期 結節性腫瘤が中等度に肥大。尿が出るまでに時間がかかったり、排尿が終わるまでに時間がかかるようになる。残尿感、頻尿も強くなる。また、膀胱に尿が残るようにもなる。 第3期 前立腺全体が肥大すると尿道は閉じてしまう。膀胱の残尿量は300~400mlとなり、膀胱が拡大。残尿量がさらに増えると自分の意思で尿を出すことができず、絶えず尿が少量ずつもれ出る状態になる。
すい臓のはたらき
すい臓は胃の裏側、脊椎の間に位置する長さ15㎝ほどの小さな臓器です。 形はおたまじゃくしに似た横長。右端は「十二指腸」に抱え込まれるように接し、左端は「脾臓」と隣り合っています。十二指腸に接している部分を「すい頭部」、中間を「すい体部」、脾臓に接している部分を「すい尾部」といいます。 すい臓は肝臓に次ぐ大きさをもつ腺組織で、消化液を分泌する"外分泌部"と、ホルモンを分泌する"内分泌部"からなっています。 外分泌部は枝分かれした導管と、その末端につながる腺房からできており、すい液の主成分である消化酵素は腺房の腺房細胞から、水分や電解質は導管から分泌されます。これを「外分泌」といいます。 腺房細胞から分泌されたすい液は、導管を通って送り出されます。導管は合流を重ねながら、次第に太い1本の管になり(主すい管といいます)すい液は、主すい管を通って、十二指腸へと運ばれます。 また、すい臓には、ホルモンを分泌する機能もあります。これを「内分泌」といい、内分泌部で行われます。 内分泌部は外分泌組織のなかに点在し、顕微鏡で見ると海に浮かぶ島のようにも見えることから、発見者の名前をとって「ランゲルハンス島(すい島ともいう)」と呼ばれています。ランゲルハンス島は特別な細胞の小さな集団で、すい臓全体に100万個以上の島があるといわれています。 ランゲルハンス島ではインスリン、グルカゴン、ソマトスタチンなどのホルモンが分泌されています。これらのホルモンは、島をとりまく毛細血管に分泌され、血液にのって全身へと運ばれます。
乳房の役目とメカニズム
左右1対の乳房は、育児のための"乳汁"をつくる乳腺組織を脂肪組織が取り巻き、リンパ管が多数通る構造を有しています。 乳房の表面はふくらんで、半球状になっており、中央付近には周囲よりも色の濃い乳輪があります。 乳汁は、乳腺組織にある腺房細胞でつくられます。この腺房細胞が複数集まると腺房となり、さらに腺房が複数集まると乳腺小葉という、房状の組織になります。 乳腺小葉の外周には、毛細血管が張り巡らされ、この血液から乳汁がつくられます。 これが乳腺小葉につながった乳管を通り、乳頭(乳首)へ運ばれます。乳首近くの乳管には乳管洞というふくらみがあり、ここは乳管から運ばれた乳汁を蓄える場所になっています。