食べ物が胃へ運ばれるしかけ
食道の役割は、口のなかで噛み砕かれた食べ物や水分を、胃へ送り込むことです。 ただ、食べ物は、自然に胃へと流れ落ちるわけではありません。食道のうねうねとした運動-蠕動運動によって、強制的に胃へと運ばれるのです。そのため、横になっていても、たとえ逆立ちしていたとしても、重力に関係なく食べ物は胃へ運ばれます。 食道の蠕動運動を担っているのは、食道壁にある固有筋層です。輪状筋が上から順に次々と収縮運動をすることで、ゆっくりと食べ物を胃へと押し運んでいきます。食べ物が食道を通過する時間は水分で1~10秒、固形物で30~60秒。胃に届くまでは水分で1秒、固形物で5~6秒です。 一方で、食道には胃からの逆流を防ぐ"防御機能"も備わっています。食道と胃の接合部である「噴門」に、「下部食道括約筋」があり、胃への入り口の開閉を調節しているのです。 括約筋とは、収縮することで管状の器官を閉じる作用をもつ筋肉のことで、ふだんは下部食道括約筋が収縮して、噴門が閉じられています。 しかし、食べ物が噴門に到達すると、下部食道括約筋がゆるんで噴門が開き、食べ物を胃へと通します。そして、食べ物が通過すると、噴門は再び閉じます。これを「噴門反射」といいます。 「のどもと過ぎれば熱さ忘れる」という諺がありますが、食道の粘膜の感覚は、あまり敏感ではありません。しかし、食べ物や飲み物の刺激には鈍感でも、実際には熱いものや強いアルコール、たばこなどの影響によって、食道の粘膜は障害されます。 とくにアルコールやたばこによる過剰な刺激は、食道炎や食道がんの原因にもなります。食べ物を飲み込むときに痛みがある、しみたり、つかえる感じがあるなどの場合は要注意です。 食道の粘膜には、胃液に含まれる強力な酸や消化酵素を防御する機能はありません。そのため、胃液の逆流にさらされていると、容易に粘膜が傷害されてしまいます。 胃液が逆流する原因は、下部食道括約筋がうまく働かないことが考えられます。また、胃の上部が横隔膜の上に脱出した状態になる「食道裂孔ヘルニア」(235頁)も、胃液を逆流させる大きな原因となります。
大腸のプロフィール
大腸は小腸から続く腸の最後にあたる部分で、小腸の外側を囲むようにして存在しています。 太さは小腸の約2倍、長さは成人で約1.5mあり、大部分は結腸が占めています 結腸は、盲腸から上へ向かう「上行結腸」、横へ伸びる「横行結腸」、上から下へ向かう「下行結腸」、下行結腸と直腸をS字で結ぶように伸びる「S状結腸」-の4つの部位からなります。 結腸の内壁は粘膜の層で覆われており、粘膜にある腸腺から粘液などが分泌されています。 小腸で消化・吸収が終わった消化物の残滓(かす)は、結腸の蠕動運動によって直腸へと運ばれます。その間に水分が吸収され、粘液などが混ざり合って便が形成されます。 S状結腸と肛門をつなぐ直腸は、長さ20㎝ほどの器官です。直腸には消化・吸収といった機能はなく、結腸でつくられた便が肛門から排出されるまで、一時ためておく場所として機能しています。 盲腸は小腸から続く部分です。小腸との境目の回盲口には弁があり、内容物の逆流を防いでいます。鳥や草食動物では、盲腸は消化機能をもつ器官として発達していますが、人における盲腸には、とくに役割はありません。 また、盲腸の先端には、「虫垂」といって、長さ数㎝、直径0.5~1㎝ほどの袋状の器官がついています。俗にいう"盲腸"という病気は、この虫垂に炎症がおこる病気で、正しくは"虫垂炎"といいます。虫垂はリンパ組織が発達しているため、免疫機能に関係するはたらきをしているのではないかと考えられていますが、炎症がおきて虫垂を切除しても内臓機能に影響はありません。
拍動のメカニズム
心臓は、心筋が規則的に収縮と弛緩を繰り返すことによって、一定のリズムで拍動を続けています。 心臓が休むことも大きく乱れることもなく、規則正しく拍動を続けていられるのは、"刺激伝導系"というメカニズムのおかげです。 刺激伝導系の発端は、心臓の運動の司令塔である"洞房結節(右心房の上端にある)"から「動け」という電気刺激の信号が発せられることです。 その信号は右心房の壁を通り、右心室との境界周辺にある房室結節に伝わります。さらに、そこからヒス束→プルキンエ線維(拍動の刺激を伝達する最終部分)に伝わり、最終的に信号に反応した心筋が収縮して拍動が生じます。 この電気信号は、房室結節でとてもゆっくりと伝えられるため、心房と心室では収縮に時間差ができます。 この時間差があることで、心房が収縮し、血液を心室に充満させ、次いで心室が収縮して血液を排出するという流れがスムーズに行われるのです。 血液の循環にあたって、避けなければならないのが血液の逆流です。そこで、血液が一方向だけに流れるように働いているのが、心臓内にある4つの弁です。右心房と右心室の間にある「三尖弁」、左心房と左心室の間にある「僧帽弁」、そして肺動脈への出口にある「肺動脈弁」、大動脈への出口にある「大動脈弁」がそれです。 心臓が静脈から血液を取り込むときには三尖弁と僧帽弁が開き、肺動脈弁と大動脈弁が閉じます。逆に、血液を送り出すときは三尖弁と僧帽弁が閉じ、肺動脈弁と大動脈弁が開くというように、交互に開閉を繰り返して血液の逆流を防いでいます。 安静時と運動時では、心拍数や心拍出量を調節する必要があります。 調節機能としては、心筋が引き伸ばされる力に比例して、心筋細胞自体が収縮力を増すこと。また、自律神経(交感神経、副交感神経)から発せられるシグナルによって、心筋がその時々に必要な心拍をおこし、血液を全身に送り出すことなどがあげられます。 からだの各部位に必要なだけの血液を送る調節は、安静時では毎分の心拍数が70回、心拍出量は5.5L程度ですが、激しい運動を行った直後には、毎分の心拍数は200回以上、血液の拍出量は25Lにも達します。
免疫機能の乱れによる不調
免疫機能の中心となる白血球は、体内に侵入した異物(抗原)を攻撃してからだを守ってくれますが、ときには、このはたらきが逆効果となることがあります。 免疫機能が何らかの原因で異常をおこすと、攻撃の必要のないものまで攻撃したり、抗原の威力がそう強くないものに過剰な攻撃をしかけたりしてしまいます。これらのことが原因で、体内の正常な組織や細胞が破壊されてしまうのです。 免疫機能の異常からおこる症状の一つは、アレルギー反応として現れます。アレルギーとは、体内に侵入した、"アレルゲン"という原因物質を攻撃するための抗体が、正常に機能しないためおこるものです。 この抗体は、「肥満細胞」に付着しますが、そこにアレルゲンがついてしまうと、肥満細胞内の化学伝達物質である"ヒスタミン"が血液中に大量に放出されます。ヒスタミンは、毛細血管を拡張する、気管支を収縮させる、血圧を上昇させる、浮腫やかゆみを引き起こすといった作用をもつため、大量に体内放出されると、かゆみ、鼻水、充血、じんましんなどのアレルギー反応がおこります。 代表的なアレルゲンは、花粉、ほこり、動物の毛です。
ものを見るメカニズム
人間がものを見るしくみは、カメラを想像すると理解しやすいかもしれません。 カメラは、レンズを通過した光が屈折し、この屈折した光が画像素子(フイルム)上に集まって、被写体を映し出します。 人の眼には「黒目」と呼ばれる角膜があります。角膜は肉眼では黒く見えますが、下の虹彩が透けて見えているだけで、実は透明な組織です。 この角膜と、角膜の後ろにある水晶体という透明な組織は、カメラでいうところのレンズの役割を果しています。 角膜と水晶体を通過した光(視覚情報)は屈折し、さらに硝子体という透明な組織を通り、網膜に象を結びます。 網膜は画像素子(フイルム)のような役割を果たす組織です。 網膜に光が達すると明暗・形・色が感知され、その情報が視神経を経由して脳に伝わります。そして、私たちは"見る"という行為を通じて、外界を認識するわけです。 屈折率(屈折の角度)が正常ならば、光は網膜でピントが合って、ぴったりと像を結びます。これを「正視」といいます。しかし、屈折率が強すぎたり、弱すぎたりすると、網膜の手前や後方で像を結ぶため、ピントが合いません。このような「正視」以外の屈折状態が「屈折異常」いいます。 屈折異常には、「近視」「遠視」「乱視」があります。 近視の多くは、眼球が前後に長くなる「眼軸長」や、光の屈折力が強すぎることによっておこります。網膜の手前でピントが合うため、近くのものはよく見えますが、遠くのものがぼやけてしまいます。 遠視は近視とは逆に、眼球の眼軸が前後に短くなることや、光の屈折力が弱すぎるためにおこります。網膜より後方でピントが合うため、遠いものも、近いものも、はっきり見えにくくなります。 乱視は眼球の表面にゆがみがあり、光が屈折するときにいろいろな方向に行ってしまうためにおこります。目に入ってきた光が、一点で像を結ばないので網膜上にはっきりとした像ができません。軽度ではあまり自覚症状がありませんが、ひどくなると、遠くのものも近くのものもぼやけて見え、片目で見るとものが2重、3重にずれて見えることもあります。 網膜には色を識別する細胞である「錐体」と、光の明暗を感知する「杆体」があります。 錐体の細胞は、赤、青、緑を感じる3種類あり、この細胞が感知する光の割合によって視神経から大脳への信号が送られます。 この情報を元に大脳で色が認識されますが、錐体の機能に異常がある場合、色覚異常といって、色を正しく識別できない状態になることがあります。